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Our coverage of operating-system issues thus far has focused mainly on
general-purpose computing systems (for example, desktop and server sys-
tems). In this chapter, we turn our attention to real-time computing systems.
The requirements of real-time systems differ from those of many of the systems
we have described, largely because real-time systems must produce results
within certain deadlines. In this chapter we provide an overview of real-
time computer systems and describe how real-time operating systems must
be constructed to meet the stringent timing requirements of these systems.

CHAPTER OBJECTIVES

¢ To explain the timing requirements of real-time systems.

» To distinguish between hard and soft real-time systems.

s To discuss the defining characteristics of real-time systems.

¢ To describe scheduling algorithms for hard real-time systems.

Overview

A real-time system is a computer system that requires not only that the
computing results be “correct” but also that the results be produced within
a specified deadline period. Results produced after the deadline has passed —
even if correct—may be of no real value. To illustrate, consider an autonomous
robot that delivers mail in an office complex. If its vision-control system
identifies a wall after the robot has walked into it, despite correctly identifying
the wall, the system has not met its requirement. Contrast this timing
requirement with the much less strict demands of other systems. In an
interactive desktop computer system, it is desirable to provide a quick response
time to the interactive user, but it is not mandatory to do so. Some systems
— such as a batch-processing system— may have no timing requirements
whatsoever.

Real-time systems executing on traditional computer hardware are used
in a wide range of applications. In addition, many real-time systems are
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embedded in “specialized devices,” such as ordinary home appliances (for
example, microwave ovens and dishwashers), consumer digital devices (for
example, cameras and MP3 players), and communication devices (for example,
cellular telephones and Blackberry handheld devices). They are also present
in larger entities, such as automobiles and airplanes. An embedded system is
a computing device that is part of a larger system in which the presence of a
computing device is often not obvious to the user.

To illustrate, consider an embedded system for controlling a home dish-
washer. The embedded system may allow various options for scheduling the
operation of the dishwasher—the water temperature, the type of cleaning
(light or heavy), even a timer indicating when the dishwasher is to start. Most
likely, the user of the dishwasher is unaware that there is in fact a computer
embedded in theappliance. Asanother example, consider an embedded system
controlling antilock brakes in an automobile. Each wheel in the automobile has
a sensor detecting how much sliding and traction are occurring, and each
sensor continually sends its data to the system controller. Taking the results
from these sensors, the controller tells the braking mechanism in each wheel
how much braking pressure to apply. Again, to the user (in this instance, the
driver of the automobile), the presence of an embedded computer system may
notbe apparent. [t is important to note, however, thatnot all embedded systems
are real-time. For example, an embedded system controlling a home furnace
may have no real-time requirements whatsoever.

Some real-time systems are identified as safety-critical systems. In a
safety-critical system, incorrect operation-—usually due to a missed deadline
—results in some sort of “catastrophe.” Examples of safety-critical systems
include weapons systems, antilock brake systems, flight-management systems,
and health-related embedded systems, such as pacemakers. In these scenarios,
the real-time system must respond to events by the specified deadlines;
otherwise, serious injury—or worse—might occur. However, a significant
majority of embedded systems do not qualify as safety-critical, including FAX
machines, microwave ovens, wristwatches, and networking devices such as
switches and routers. For these devices, missing deadline requirements results
in nothing more than perhaps an unhappy user.

Real-time computing is of two types: hard and soft. A hard real-time
system has the most stringent requirements, guaranteeing that critical real-
time tasks be completed within their deadlines. Safety-critical systems are
typically hard real-time systems. A soft real-time system is less restrictive,
simply providing that a critical real-time task will receive priority over other
tasks and that it will retain that priority until it completes. Many commercial
operating systems—as well as Linux—provide soft real-time support.

System Characteristics

In this section, we explore the characteristics of real-time systems and address
issues related to designing both soft and hard real-time operating systems.
The following characteristics are typical of many real-time systems:
® Single purpose

® Small size
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¢ Inexpensively mass-produced ;

¢ Specific timing requirements

We next examine each of these characteristics.

Unlike PCs, which are put to many uses, a real-time system typically serves
only a single purpose, such as controlling antilock brakes or delivering music
on an MP3 player. It is unlikely that a real-time system controlling an airliner’s
navigation system will also play DVDs! The design of a real-time operating
system reflects its single-purpose nature and is often quite simple.

Many real-time systems exist in environments where physical space is
constrained. Consider the amount of space available in a wristwatch or a
microwave oven—it is considerably less than what is available in a desktop
computer. As a result of space constraints, most real-time systems lack both
the CPU processing power and the amount of memory available in standard
desktop PCs. Whereas most contemporary desktop and server systems use 32-
or 64-bit processors, many real-time systems run on 8- or 16-bit processors.
Similarly, a desktop PC might have several gigabytes of physical memory,
whereas a real-time system might have less than a megabyte. We refer to the
footprint of a system as the amount of memory required to run the operating
system and its applications. Because the amount of memory is limited, most
real-time operating systems must have small footprints.

Next, consider where many real-time systems are implemented: They are
often found in home appliances and consumer devices. Devices such as digital
cameras, microwave ovens, and thermostats are mass-produced in very cost-
conscious environments. Thus, the microprocessors for real-time systems must
also be inexpensively mass-produced.

One technique for reducing the cost of an embedded controller is to
use an alternative technique for organizing the components of the computer
system. Rather than organizing the computer around the structure shown in
Figure 19.1, where buses provide the interconnection mechanism to individual
components, many embedded system controllers use a strategy known as
system-on-chip (8OC). Here, the CPU, memory (including cache), memory-
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Figure 19.1 Bus-ariented organization.
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management-unit (MMU), and any attached peripheral ports, such as USBports,
are contained in a single integrated circuit. The SOC strategy is typically less
expensive than the bus-oriented organization of Figure 19.1.

We turn now to the final characteristic identified above for real-time
systems: specific timing requirements. It is, in fact, the defining characteristic of
suchsystems. Accordingly, the defining characteristic of both hard and soft real-
time operating systems is to support the timing requirements of real-time tasks,
and the remainder of this chapter focuses on this issue. Real-time operating
systems meet timing requirements by using scheduling algorithms that give
real-time processes the highest scheduling priorities. Furthermore, schedulers
must ensure that the priority of a real-time task does not degrade over time. A
second, somewhat related, technique for addressing timing requirements is by
minimizing the response time to events such as interrupts.

Features of Real-Time Kernels

In this section, we discuss the features necessary for designing an operating
system that supports real-time processes. Before we begin, though, let's
consider what is typically not needed for a real-time system. We begin
by examining several features provided in many of the operating systems
discussed so far in this text, including Linux, UNIX, and the various versions
of Windows. These systems typically provide support for the following:

¢ A variety of peripheral devices such as graphical displays, CD, and DVD
drives

® Protection and security mechanisms

® Multiple users

Supporting these features often results in a sophisticated—and large—kernel.
For example, Windows XP has over forty million lines of source code. In
contrast, a typical real-time operating system usually has a very simple design,
often written in thousands rather than millions of lines of source code. We
would not expect these simple systems to include the features listed above.
But why don’t real-time systems provide these features, which are crucial
to standard desktop and server systems? There are several reasons, but three
are most prominent. First, because most real-time systems serve a single
purpose, they simply do not require many of the features found in a desktop
PC. Consider a digital wristwatch: It obviously has no need to support a
disk drive or DVD, let alone virtual memory. Furthermore, a typical real-time
system does not include the notion of a user: The system simply supports
a small number of tasks, which often await input from hardware devices
(sensors, vision identification, and so forth). Second, the features supported
by standard desktop operating systems are impossible to provide without fast
processors and large amounts of memory. Both of these are unavailable in
real-time systems due to space constraints, as explained earlier. In addition,
many real-time systems lack sufficient space to support peripheral disk drives
or graphical displays, although some systems may support file systems using
nonvolatile memory (NVRAM). Third, supporting features common in standard
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Figure 19.2 Address translation in real-time systems.

desktop computing environments would greatly increase the cost of real-time
systems, which could make such systems economically impractical.

Additional considerations apply when considering virtual memory in a
real-time system. Providing virtual memory features as described in Chapter 9
require the system include a memory management unit (MMU) for translating
logical to physical addresses. However, MMUs typically increase the cost
and power consumption of the system. In addition, the time required to
translate logical addresses to physical addresses—especially in the case of a
translation look-aside buffer (TLB) miss—may be prohibitive in a hard real-time
environment. In the following we examine several appraoches for translating
addresses in real-time systems.

Figure 19.2 illustrates three different strategies for managing address
translation available to designers of real-time operating systems. In this
scenario, the CPU generates logical address L that must be mapped to
physical address P. The first approach is to bypass logical addresses and
have the CPU generate physical addresses directly. This technique—known
as real-addressing mode—does not employ virtual memory techniques and
is effectively stating that P equals L. One problem with real-addressing mode
is the absence of memory protection between processes. Real-addressing mode
may also require that programmers specify the physical location where their
programs are loaded into memory. However, the benefit of this approach
is that the system is quite fast, as no time is spent on address translation.
Real-addressing mode is quite common in embedded systems with hard
real-time constraints. In fact, some real-time operating systems running on
microprocessors containing an MMU actually disable the MMU to gain the
performance benefit of referencing physical addresses directly.

A second strategy for translating addresses is to use an approach similar
to the dynamic relocation register shown in Figure 8.4. In this scenario, a
relocation register R is set to the memory location where a program is loaded.
The physical address P is generated by adding the contents of the relocation
register Rto L. Some real-time systems configure the MMU to perform this way.
The obvious benefit of this strategy is that the MMU can easily translate logical
addresses to physical addresses using P = L + R. However, this system still
suffers from a lack of memory protection between processes.
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The last approach is for the real-time system to provide full virtual memory
functionality as described in Chapter 9. In this instance, address translation
takes place via page tables and a translation look-aside buffer, or TLB. In
addition to allowing a program to be loaded at any memory location, this
strategy also provides memory protection between processes. For systems
without attached disk drives, demand paging and swapping may not be
possible. However, systems may provide such features using NVRAM flash
memory. The LynxOS and OnCore Systems are examples of real-time operating
systems providing full support for virtual memory.

Implementing Real-Time Operating Systems

Keeping in mind the many possible variations, we now identify the features
necessary for implementing a real-time operating system. This list is by no
means absolute; some systems provide more features than we list below, while
other systems provide fewer.

® Preemptive, priority-based scheduling
® Preemptive kernel

® Minimized latency

One notable feature we omit from this list is networking support. How-
ever, deciding whether to support networking protocols such as TCP/IP is
simple: If the real-time system must be connected to a network, the operating
system must provide networking capabilities. For example, a system that
gathers real-time data and transmits it to a server must obviously include
networking features. Alternatively, a self-contained embedded system requir-
ing no interaction with other computer systems has no obvious networking
requirement.

In the remainder of this section, we examine the basic requirements listed
above and identify how they can be implemented in a real-time operating
system.

19.4.1 Priority-Based Scheduling

The most important feature of a real-time operating system is to respond
immediately to a real-time process as soon as that process requires the CPU.
As a result, the scheduler for a real-time operating system must support a
priority-based algorithm with preemption. Recall that priority-based schedul-
ing algorithms assign each process a priority based on its importance; more
important tasks are assigned higher priorities than those deemed less impor-
tant. If the scheduler also supports preemption, a process currently running
on the CPU will be preempted if a higher-priority process becomes available to
run.

Preemptive, priority-based scheduling algorithms are discussed in detail
in Chapter 5, where we also present examples of the soft real-time scheduling
features of the Solaris, Windows XP, and Linux operating systems. Each of
these systems assigns real-time processes the highest scheduling priority. For
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example, Windows XP has 32 different priority levels; the highest leyels—
priority values 16 to 31—are reserved for real-time processes. Solaris and
Linux have similar prioritization schemes.

Note, however, that providing a preemptive, priority-based scheduler only
guarantees soft real-time functionality. Hard real-time systems must further
guarantee that real-time tasks will be serviced in accord with their deadline
requirements, and making such guarantees may require additional scheduling
features. In Section 19.5, we cover scheduling algorithms appropriate for hard
real-time systems.

19.4.2 Preemptive Kernels

Nonpreemptive kernels disallow preemption of a process running in kernel
mode; a kernel-mode process will run until it exits kernel mode, blocks, or
voluntarily yields control of the CPU. In contrast, a preemptive kernel allows
the preemption of a task running in kernel mode. Designing preemptive
kernels can be quite difficult; and traditional user-oriented applications such
as spreadsheets, word processors, and web browsers typically do not require
such quick response times. As a result, some commercial desktop operating
systems—such as Windows XP—are nonpreemptive.

However, to meet the timing requirements of real-time systems—in partic-
ular, hard real-time systems-—preemptive kernels are mandatory. Otherwise,
a real-time task might have to wait an arbitrarily long period of time while
another task was active in the kernel.

There are various strategies for making a kernel preemptible. One approach
is to insert preemption points in long-duration system calls. A preemption
point checks to see whether a high-priority process needs to be run. If so, a
context switch takes place. Then, when the high-priority process terminates,
the interrupted process continues with the system call. Preemption points
can be placed only at safe locations in the kernel—that is, only where kernel
data structures are not being modified. A second strategy for making a kernel
preemptible is through the use of synchronization mechanisms, which we
discussed in Chapter 6. With this method, the kernel can always be preemptible,
because any kernel data being updated are protected from modification by the
high-priority process.

event E first occurs

event latency
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!

real-time system responds to E
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Figure 19.3 Event latency.
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19.4.3 Minimizing Latency ;

Consider the event-driven nature of a real-time system: The system is typically
waiting for an event in real time to occur. Events may arise either in software
—as when a timer expires—or in hardware—as when a remote-controlled
vehicle detects that it is approaching an obstruction. When an event occurs, the
system must respond to and service it as quickly as possible. We refer to event
latency as the amount of time that elapses from when an event occurs to when
it is serviced (Figure 19.3).

Usually, different events have different latency requirements. For example,
the Jatency requirement for an antilock brake system might be three to five
milliseconds, meaning that from the time a wheel first detects that it is sliding,
the system controlling the antilock brakes has three to five milliseconds to
respond to and control the situation. Any response that takes longer might
result in the automobile’s veering out of control. In contrast, an embedded
system controlling radar in an airliner might tolerate a latency period of several
seconds.

Two types of latencies affect the performance of real-time systems:

1. Interrupt latency
2. Dispatch latency

Interrupt latency refers to the period of time from the arrival of an interrupt
at the CPU to the start of the routine that services the interrupt. When an
interrupt occurs, the operating system must first complete the instruction it
is executing and determine the type of interrupt that occurred. It must then
save the state of the current process before servicing the interrupt using the
specific interrupt service routine (ISR). The total time required to perform these
tasks is the interrupt latency (Figure 19.4). Obviously, it is crucial for real-time

interrupt
i i : determine
task T running interrupt
type
context
switch
ISR
{ ]
interrupt
latency
time

Figure 19.4 Interrupt latency.
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operating systems to minimize interrupt latency to ensure that real-timestasks
receive immediate attention.

One important factor contributing to interrupt latency is the amount of time
interrupts may be disabled while kernel data structures are being updated.
Real-time operating systems require that interrupts to be disabled for very
short periods of time. However, for hard real-time systems, interrupt latency
must not only be minimized, it must in fact be bounded to guarantee the
deterministic behavior required of hard real-time kernels.

The amount of time required for the scheduling dispatcher to stop one
process and start another is known as dispatch latency. Providing real-time
tasks with immediate access to the CPU mandates that real-time operating
systems minimize this latency. The most effective technique for keeping
dispatch latency low is to provide preemptive kernels.

In Figure 19.5, we diagram the makeup of dispatch latency. The conflict
phase of dispatch latency has two components:

1. Preemption of any process running in the kernel

2. Release by low-priority processes of resources needed by a high-priority
process

As an example, in Solaris, the dispatch latency with preemption disabled is
over 100 milliseconds. With preemption enabled, it is reduced to less than a
millisecond.

One issue that can affect dispatch latency arises when a higher-priority
process needs to read or modify kernel data that are currently being accessed
by a lower-priority process—or a chain of lower-priority processes. As kernel
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Figure 19.5 Dispatch latency.
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data are typically protected with a lock, the higher-priority process will have to
wait for a lower-priority one to finish with the resource. The situation becomes
more complicated if the lower-priority process is preempted in favor of another
process with a higher priority. As an example, assume we have three processes,
L, M, and H, whose priorities follow the order L. < M < H. Assume that
process H requires resource R, which is currently being accessed by process L.
Ordinarily, process H would wait for L to finish using resource R. However,
now suppose that process M becomes runnable, thereby preempting process
L. Indirectly, a process with a lower priority—process M—has affected how
long process H must wait for L to relinquish resource R.

This problem, known as priority inversion, can be solved by use of the
priority-inheritance protocol. According to this protocol, all processes that
are accessing resources needed by a higher-priority process inherit the higher
priority until they are finished with the resources in question. When they
are finished, their priorities revert to their original values. In the example
above, a priority-inheritance protocol allows process L to temporarily inherit
the priority of process H, thereby preventing process M from preempting its
execution. When process L has finished using resource R, it relinquishes its
inherited priority from H and assumes its original priority. As resource R is
now available, process H—not M—will run next.

Real-Time CPU Scheduling

Our coverage of scheduling so far has focused primarily on soft real-time
systems. As mentioned, though, scheduling for such systems provides no
guarantee on when a critical process will be scheduled; it guarantees only that
the process will be given preference over noncritical processes. Hard real-time
systems have stricter requirements. A task must be serviced by its deadline;
service after the deadline has expired is the same as no service at all.

We now consider scheduling for hard real-time systems. Before we proceed
with the details of the individual schedulers, however, we must define certain
characteristics of the processes that are to be scheduled. First, the processes
are considered periodic. That is, they require the CPU at constant intervals
(periods). Each periodic process has a fixed processing time # once it acquires
the CPU, a deadline d when it must be serviced by the CPU, and a period p.
The relationship of the processing time, the deadline, and the period can be
expressed as 0 <t < d < p. The rate of a periodic task is 1/p. Figure 19.6
illustrates the execution of a periodic process over time. Schedulers can take
advantage of this relationship and assign priorities according to the deadline
or rate requirements of a periodic process.

What is unusual about this form of scheduling is that a process may have to
announce its deadline requirements to the scheduler. Then, using a technique
known as an admission-control algorithm, the scheduler either admits the
process, guaranteeing that the process will complete on time, or rejects the
request as impossible if it cannot guarantee that the task will be serviced by its
deadline.

In the following sections, we explore scheduling algorithms that address
the deadline requirements of hard real-time systems.



19.5 Real-Time CPU Scheduling 705

i

[ Time

Period, Period, Periods

Figure 19.6 Periodic task.

19.5.1 Rate-Monotonic Scheduling

The rate-monotonic scheduling algorithm schedules periodic tasks using a
static priority policy with preemption. If a lower-priority process is running
and a higher-priority process becomes available to run, it will preempt the
lower-priority process. Upon entering the system, each periodic task is assigned
a priority inversely based on its period: The shorter the period, the higher the
priority; the longer the period, the lower the priority. The rationale behind this
policy is to assign a higher priority to tasks that require the CPU more often.
Furthermore, rate-monotonic scheduling assumes that the processing time of
a periodic process is the same for each CPU burst. That is, every time a process
acquires the CPU, the duration of its CPU burst is the same.

Let’s consider an example. We have two processes P; and P». The periods
for Py and P> are 50 and 100, respectively—that is, p; = 50 and p2 = 100. The
processing times are i = 20 for P} and £ = 35 for P;. The deadline for each
process requires that it complete its CPU burst by the start of its next period.

We must first ask ourselves whether it is possible to schedule these tasks
so that each meets its deadlines. If we measure the CPU utilization of a process
P; as the ratio of its burst to its period—#;/p;—the CPU utilization of P; is
20/50 = 0.40 and that of P> is 35/100 = 0.35, for a total CPU utilization of 75
percent. Therefore, it seems we can schedule these tasks in such a way that
both meet their deadlines and still leave the CPU with available cycles.

First, suppose we assign P; a higher priority than P;. The execution of P
and P, is shown in Figure 19.7. As we can see, P, starts execution first and
completes at time 35. At this point, P; starts; it completes its CPU burst at time
55. However, the first deadline for P; was at time 50, so the scheduler has
caused P; to miss its deadline.

Now suppose we use rate-monotonic scheduling, in which we assign P
a higher priority than P, since the period of P; is shorter than that of Ps.

Deadlines Py Py Py
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Figure 19.7 Scheduling of tasks when P has a higher priority than P;.
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Figure 19.8 Rate-monotonic scheduling.

The execution of these processes is shown in Figure 19.8. P; starts first and
completes its CPU burst at time 20, thereby meeting its first deadline. P, starts
running at this point and runs until time 50. At this time, it is preempted by
Py, although it still has 5 milliseconds remaining in its CPU burst. Py completes
its CPU burst at time 70, at which point the scheduler resumes P;. P, completes
its CPU burst at time 75, also meeting its first deadline. The system is idle until
time 100, when P is scheduled again.

Rate-monotonic scheduling is considered optimal in the sense that if a set
of processes cannot be scheduled by this algorithm, it cannot be scheduled
by any other algorithm that assigns static priorities. Let’s next examine a set
of processes that cannot be scheduled using the rate-monotonic algorithm.
Assume that process P; has a period of p; = 50 and a CPU burst of #; = 25.
For P, the corresponding values are p, = 80 and # = 35. Rate-monotonic
scheduling would assign process Pi a higher priority, as it has the shorter
period. The total CPU utilization of the two processes is (25/50)+(35/80) = 0.94,
and it therefore seems logical that the two processes could be scheduled and
still leave the CPU with 6 percent available time. The Gantt chart showing the
scheduling of processes Py and P; is depicted in Figure 19.9. Initially, P; runs
until it completes its CPU burst at time 25. Process P, then begins running and
runs until time 50, when it is preempted by P;. At this point, P, still has 10
milliseconds remaining in its CPU burst. Process P runs until time 75; however,
P; misses the deadline for completion of its CPU burst at time 80.

Despite being optimal, then, rate-monotonic scheduling has a limitation:
CPU utilization is bounded, and it is not always possible to fully maximize CPU
resources. The worst-case CPU utilization for scheduling N processes is

2011 7).

With one process in the system, CPU utilization is 100 percent; but it falls
to approximately 69 percent as the number of processes approaches infinity.
With two processes, CPU utilization is bounded at about 83 percent. Combined
CPU utilization for the two processes scheduled in Figures 19.7 and 19.8 is 75
percent; and therefore, the rate-monotonic scheduling algorithm is guaranteed
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Figure 19.9 Missing deadlines with rate-monotonic scheduling.
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to schedule them so that they can meet their deadlines. For the two progesses
scheduled in Figure 19.9, combined CPU utilization is approximately 94
percent; therefore, rate-monotonic scheduling cannot guarantee that they can
be scheduled so that they meet their deadlines.

19.6.2 Earliest-Deadline-First Scheduling

Earliest-deadline-first (EDF) scheduling dynamically assigns priorities accord-
ing to deadline. The earlier the deadline, the higher the priority; the later the
deadline, the lower the priority. Under the EDF policy, when a process becomes
runnable, it must announce its deadline requirements to the system. Priorities
may have to be adjusted to reflect the deadline of the newly runnable process.
Note how this differs from rate-monotonic scheduling, where priorities are
fixed.

To illustrate EDF scheduling, we again schedule the processes shown in
Figure 19.9, which failed to meet deadline requirements under rate-monotonic
scheduling. Recall that P; has values of p; = 50 and 4 = 25 and that P; has
values p» = 80 and £, = 35. The EDF scheduling of these processes is shown in
Figure 19.10. Process P; has the earliest deadline, so its initial priority is higher
than that of process P». Process P, begins running at the end of the CPU burst
for P,. However, whereas rate-monotonic scheduling allows P; to preempt P,
at the beginning of its next period at time 50, EDF scheduling allows process
P5 to continue running. P, now has a higher priority than P; because its next
deadline (at time 80) is earlier than that of P; (at time 100). Thus, both P, and P,
have met their first deadlines. Process P; again begins running at time 60 and
completes its second CPU burst at time 85, also meeting its second deadline at
time 100. P, begins running at this point, only to be preempted by P; at the
start of its next period at time 100. P, is preempted because P; has an earlier
deadline (time 150) than P> (time 160). At time 125, P; completes its CPU burst
and P, resumes execution, finishing at time 145 and meeting its deadline as
well. The system is idle until time 150, when P is scheduled to run once again.

Unlike the rate-monotonic algorithm, EDF scheduling does not require that
processes be periodic, nor must a process require a constant amount of CPU
time per burst. The only requirement is that a process announce its deadline
to the scheduler when it becomes runnable. The appeal of EDF scheduling is
that it is theoretically optimal —theoretically, it can schedule processes so that
each process can meet its deadline requirements and CPU utilization will be
100 percent. In practice, however, it is impossible to achieve this level of CPU
utilization due to the cost of context switching between processes and interrupt
handling,.
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Figure 19.10 Earliest-deadline-first scheduling.
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19.5.3 Proportional Share Scheduling »

Proportional share schedulers operate by allocating T shares among all
applications. Anapplication can receive N shares of time, thus ensuring that the
application will have N/ T of the total processor time. As an example, assume
that there is a total of T = 100 shares to be divided among three processes, A,
B, and C. Ais assigned 50 shares, B is assigned 15 shares, and C is assigned
20 shares. This scheme ensures that A will have 50 percent of total processor
time, B will have 15 percent, and C will have 20 percent.

Proportional share schedulers must work in conjunction with an admission
control policy to guarantee that an application receives its allocated shares
of time. An admission control policy will only admit a client requesting a
particular number of shares if there are sufficient shares available. In our current
example, we have allocated 50 + 15 + 20 = 75 shares of the total of 100 shares.
If a new process D requested 30 shares, the admission controller would deny
D entry into the system.

19.5.4 Pthread Scheduling

The POSIX standard also provides extensions for real-time computing—
POSIX.1b. In this section, we cover some of the POSIX Pthread API related
to scheduling real-time threads. Pthreads defines two scheduling classes for
real-time threads:

® SCHED_FIFO
& SCHED RR

SCHED _FIFO schedules threads according to a first-come, first-served policy
using a FIFO queue as outlined in Section 5.3.1. However, there is no time slicing
among threads of equal priority. Therefore, the highest-priority real-time thread
at the front of the FIFO queue will be granted the CPU until it terminates
or blocks. SCHED.RR (for round-robin) is similar to SCHED_FIFO except that
it provides time slicing among threads of equal priority. Pthreads provides
an additional scheduling class—SCHED.OTHER—but its implementation is
undefined and system specific; it may behave differently on different systems.

The Pthread API specifies the following two functions for getting and
setting the scheduling policy:

® pthread.attr. getsched policy(pthread attr t *attr, int
*policy)

¢ pthread.attr.getsched.policy(pthread attr t *attr, int
policy)

The first parameter to both functions is a pointer to the set of attributes for

the thread. The second parameter is either a pointer to an integer that is
set to the current scheduling policy (for pthread.attr_getsched policy())
or an integer value—SCHED_FIFO, SCHED.RR, or SCHED.OTHER—for the
pthread attr getsched policy() function. Both functions return non-zero
values if an error occurs.

-y
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#include <pthread.h>
#include <stdio.h>
$define NUM.THREADS 5

int main{int argc, char *argvlil)

{
int i, policy;
pthread t tid [NUM.THREADS] ;
pthread.attr.t attr;

/* get the default attributes */
pthread attr_init{(&attr};

/* get the current scheduling policy */

if (pthread.attr getschedpolicy(&attr, &policy) != 0}
fprintf (stderr, "Unable to get policy.\n");
else {
if (policy == SCHED.OTHER)
printf ("SCHED OTHER\n") ;
else if (policy == SCHED_RR)
printf ("SCHED RR\n") ;
else if (policy == SCHED.FIFO)

printf ("SCHED FIFO\n") ;

}

/* set the scheduling pclicy - FIFO, RR, or OTHER */
if (pthread_attr setschedpolicy(&attr, SCHED.OTHER} != 0)
fprintf (stderr, "Unable to set policy.\n");

/* create the threads */
for (i = 0; 1 <« NUM.THREADS; i++)
pthreaducreate(&tid[i],&attr,runner,NULL);

/* now join on each thread */
for (i = 0; 1 <« NUM.THREADS; i++)
pthread join(tid[il, NULL) ;

}

/* Each thread will begin control in this function */
void *runner (void *param)
{

/* do some work ... */

pthread exit (0);

Figure 19.11 Pthread scheduling AP
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In Figure 19.11, we illustrate a Pthread program using this APE This
program first determines the current scheduling policy followed by setting
the scheduling algorithm to SCHED_OTHER.

VxWorks 5.x

In this section, we describe VxWorks, a popular real-time operating system
providing hard real-time support. VxWorks, commercially developed by Wind
River Systems, is widely used in automobiles, consumer and industrial devices,
and networking equipment such as switches and routers. VxWorks is also used
to control the two rovers— Spirit and Opportunity—that began exploring the
planet Mars in 2004.

The organization of VxWorks is shown in Figure 19.12. VxWorks is centered
around the Wind microkernel. Recall from our discussion in Section 2.7.3 that
microkernels are designed so that the operating-system kernel provides a bare
minimum of features; additional utilities, such as networking, file systems,
and graphics, are provided in libraries outside of the kernel. This approach
offers many benefits, including minimizing the size of the kernel-—a desirable
feature for an embedded system requiring a small footprint.

The Wind microkernel supports the following basic features:

® Processes. The Wind microkernel provides support for individual pro-
cesses and threads (using the Pthread API). However, similar to Linux,
VxWorks does not distinguish between processes and threads, instead
referring to both as tasks.

embedded real-time application

POSIX library Java library

graphics

virtual memory g
library

VxVMI

Wind microkernel

hardware level
(Peritium, Power PC, MIPS, customized, etc.)

Figure 19.12 The organization of VxWorks.
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The Linux operating system is beingused incréasingly in real-t
- ments. We have already ¢ covered its soft real-time s :
2963, Whereby real-time tasks are assigned thehlghest pnonty ,

. Additional features in the 2. 6 elease of the kernel make Linux

e ‘EBI‘!VIIOR" :

; makes it ea51er to port Lmux to
“the kernel into modular components.
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A real—tlme system: This is. the approach ’taken by the RTLmux _
system. In RTLinux, the standard Linux kernel runs as a task in a small.

_ real-time operating system. The real-time kernel handles all interrupts—
. directing each interrupt to a handler in the standard kernel or to an inter-
rupt-handler in the: real-time kernel. Furthermore, RTLinux prevents the
standard Linux kernel from ever disabling interrupts, thus ensuring that
it cannot add latency to the real-time system. RTLinux also provides different.
schedulingpolicies, including rate-monotonic schedulmg (Section 19.5. 1) and

earhest—deadlme-fu‘st scheduling (Section 19.5.2). s L

¢ Scheduling. Wind provides two separate scheduling models: preemptive
and nonpreemptive round-robin scheduling with 256 different priority
levels. The scheduler also supports the POSIX API for real-time threads
covered in Section 19.5.4.

¢ Interrupts. The Wind microkernel also manages interrupts. To support
hard real-time requirements, interrupt and dispatch latency times are
bounded.

* Interprocess communication. The Wind microkernel provides both shared
memory and message passing as mechanisms for communication between
separate tasks. Wind also allows tasks to communicate using a technique
known as pipes—a mechanism that behaves in the same way as a FIFO
queue but allows tasks to communicate by writing to a special file, the pipe.
To protect data shared by separate tasks, VxWorks provides semaphores
and mutex locks with a priority inheritance protocol to prevent priority
inversion.

Qutside the microkernel, VxWorks includes several component libraries
that provide support for POSIX, Java, TCP/IP networking, and the like. All
components are optional, allowing the designer of an embedded system to
customize the system according to its specific needs. For example, if networking
is not required, the TCP/IP library can be excluded from the image of the
operating system. Such a strategy allows the operating-system designer to
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include only required features, thereby minimizing the size—or footprint—of
the operating system.

VxWorks takes an interesting approach to memory management, support-
ing two levels of virtual memory. The first level, which is quite simple, allows
control of the cache on a per-page basis. This policy enables an application
to specify certain pages as non-cacheable. When data are being shared by
separate tasks running on a multiprocessor architecture, it is possible that
shared data can reside in separate caches local to individual processors. Unless
an architecture supports a cache-coherency policy to ensure that the same
data residing in two caches will not be different, such shared data should not
be cached and should instead reside only in main memory so that all tasks
maintain a consistent view of the data.

The second level of virtual memory requires the optional virtual memory
component VxVMI (Figure 19.12), along with processor support for a memory
management unit (MMU). By loading this optional component on systems with
an MMU, VxWorks allows a task to mark certain data areas as private. A data area
marked as private may only be accessed by the task it belongs to. Furthermore,
VxWorks allows pages containing kernel code along with the interrupt vector
to be declared as read-only. This is useful, as VxWorks does not distinguish
between user and kernel modes; all applications run in kernel mode, giving an
application access to the entire address space of the system.

Summary

A real-time system is a computer system requiring that results arrive within
a deadline period; results arriving after the deadline has passed are useless.
Many real-time systems are embedded in consumer and industrial devices.
There are two types of real-time systems: soft and hard real-time systems.
Soft real-time systems are the least restrictive, assigning real-time tasks higher
scheduling priority than other tasks. Hard real-time systems must guarantee
that real-time tasks are serviced within their deadline periods. In addition to
strict timing requirements, real-time systems can further be characterized as
having only a single purpose and running on small, inexpensive devices.

To meet timing requirements, real-time operating systems must employ
various techniques. The scheduler for a real-time operating system must sup-
port a priority-based algorithm with preemption. Furthermore, the operating
system must allow tasks running in the kernel to be preempted in favor
of higher-priority real-time tasks. Real-time operating systems also address
specific timing issues by minimizing both interrupt and dispatch latency.

Real-time scheduling algorithms include rate-monotonic and earliest-
deadline-first scheduling. Rate-monotonic scheduling assigns tasks that
require the CPU more often a higher priority than tasks that require the .
CPU less often. Earliest-deadline-first scheduling assigns priority according
to upcoming deadlines—the earlier the deadline, the higher the priority.
Proportional share scheduling uses a technique of dividing up processor time
into shares and assigning each process a number of shares, thus guaranteeing
each process its proportional share of CPU time. The Pthread API provides
various features for scheduling real-time threads as well.
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Identify whether hard or soft real-time scheduling is more appropriate
in the following environments:

a. Thermostat in a household

b. Control system for a nuclear power plant
c. Fuel economy system in an automobile
d. Landing system in a jet airliner

Discuss ways in which the priority inversion problem could be
addressed in a real-time system. Also discuss whether the solutions
could be implemented within the context of a proportional share
scheduler.

The Linux 2.6 kernel can be built with no virtual memory system.
Explain how this feature may appeal to designers of real-time systems.

Under what circumstances is rate-monotonic scheduling inferior to
earliest-deadline-first scheduling in meeting the deadlines associated
with processes?

Consider two processes, Py and P>, where p; = 50, 4 = 25, p» = 75,
and 5 = 30.

a. Can these two processes be scheduled using rate-monotonic
scheduling? Illustrate your answer using a Gantt chart.

b. Illustrate the scheduling of these two processes using earliest-
deadline-first (EDF) scheduling.

What are the various components of interrupt and dispatch latency?

Explain why interrupt and dispatch latency times must be bounded in
a hard real-time systemn.
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