A GENERAL VIEW

1.1 INTRODUCTION

Real-time systems are computing systems that must react within precise time con-
straints to events in the environment. As a consequence, the correct behavior of these
systems depends not only on the value of the computation but also on the time at which
the results are produced [SR88]. A reaction that occurs too late could be useless or
even dangerous. Today, real-time computing plays a crucial role in our society, since
an increasing number of complex systems rely, in part or completely, on computer
control. Examples of applications that require real-time computing include

s Chemical and nuclear plant control,

= Control of complex production processes,
m Railway switching systems,

= Automotive applications,

= Flight control systems,

m Environmental acquisition and monitoring,
m TeIecommunicétion systems,

m Industrial automation,

= Robotics,

= Military systems,

2 CHAPTER 1
m Space missions,

® Multimedia systems, and

= Virtual reality.

Despite this large application domain, many researchers, developers, and technical
managers have serious misconceptions about real-time computing [Sta88], and most
of today’s real-time control systems are still designed using ad hoc techniques and
heuristic approaches. Very often, control applications with stringent time constraints
are implemented by writing large portions of code in assembly language, programming
timers, writing low-level drivers for device handling, and manipulating task and inter-
rupt priorities. Although the code produced by these techniques can be optimized to
run very efficiently, this approach has the following disadvantages:

= Tedious programming. The implementation of large and complex applications
in assembly language is much more difficult and time consuming than high-level
programming. Moreover, the efficiency of the code strongly depends on the
programmer’s ability.

= Difficult code understanding. Except for the programmers who develop the
application, very few people can fully understand the functionality of the software
produced. Clever hand-coding introduces additional complexity and makes a
program more difficult to comprehend.

= Difficult software maintainability. As the the complexity of the program in-
creases, the modification of large assembly programs becomes difficult even for
the original programmer.

= Difficult verification of time constraints. Without the support of specific tools
and methodologies for code and schedulability analysis, the verification of time
constraints becomes practically impossible.

The major consequence of this approach is that the control software produced by
empirical techniques can be highly unpredictable. If all critical time constraints cannot
be verified a priori and the operating system does not include specific features for
handling real-time tasks, the system could apparently work well for a period of time,
but it could collapse in certain rare, but possible, situations. The consequences of a
failure can sometimes be catastrophic and may injure people or cause serious damage
to the environment.

A General View 3 '

A high percentage of accidents that occur in nuclear power plants, in space missions,
or in defensive systems are often caused by software bugs in the control system. In
some cases, these accidents have caused huge economic losses or even catastrophic
consequences including the loss of human lives.

As an example, the first flight of the space shuttle was delayed, at considerable cost,
because of a timing bug that arose from a transient CPU overload during system ini-
tialization on one of the redundant processors dedicated to the control of the aircraft
[Sta88]. Although the shuttle control system was intensively tested, the timing error
was never discovered before. Later, by analyzing the code of the processes, it has been
found that there was only a 1 in 67 probability (about 1.5 percent) that a transient over-
load during initialization could push the redundant processor out of synchronization.

Another software bug was discovered on the real-time control system of the Patriot
missiles, used to protect Saudi Arabia during the Gulf War.! When a Patriot radar
sights a flying object, the on-board computer calculates its trajectory and, to ensure
that no missiles are launched in vain, it performs a verification. If the flying object
passes through a specific location, computed based on the predicted trajectory, then the
Patriot is launched against the target, otherwise the phenomenon is classified as a false

alarm.

On February 25, 1991, the radar sighted a Scud missile directed at Saudi Arabia, and
the on-board computer predicted its trajectory, performed the verification, but classified
the event as a false alarm. A few minutes later, the Scud fell on the city of Dhahran,
causing victims and enormous economic damage. Later on, it was discovered that,
because of a subtle software bug, the real-time clock of the on-board computer was
accumulating a delay of about 57 microseconds per minute. The day of the accident,
the computer had been working for about 100 hours (an exceptional condition that was
never experienced before), thus accumulating a total delay of 343 milliseconds. This
delay caused a prediction error in the verification phase of 687 meters! The bug was
corrected on February 26, the day after the accident.

The examples of failures described above show that software testing, although impor-
tant, does not represent a solution for achieving predictability in real-time systems.
This is mainly due to the fact that, in real-time control applications, the program flow
depends on input sensory data and environmental conditions, which cannot be fully
replicated during the testing phase. As a consequence, the testing phase can provide
only a partial verification of the software behavior, relative to the particular subset of
data provided as input.

1L’Espresso, Vol. XXXVIII, No. 14, 5 April 1992, p. 167.

b

-

4 : CHAPTER 1

A more robust guarantee of the performance of a real-time system under all possi-
ble operating conditions can be achieved only by using more sophisticated design
methodologies, combined with a static analysis of the source code and specific op-
erating systems mechanisms, purposely designed to support computation under time
constraints. ‘Moreover, in critical applications, the control system must be capable of
handling all anticipated scenarios, including peak load situations, and its design must
be driven by pessimistic assumptions on the events generated by the environment.

In 1949, an aeronautical engineer of the U.S. Air Force, Captain Ed Murphy, observed
the evolution of his experiments and said: “If something can go wrong, it will go
wrong.” Several years later, Captain Ed Murphy became famous around the world
not for his work in avionics but for his phrase, simple but ineluctable, today known as’
Murphy’s Law [Blo77, Blo80, Blo88]. Since that time, many other laws on existential
pessimism have been formulated to describe unfortunate events in a humorous fashion
Due to the relevance that pessimistic assumptions have on the design of real—timc;.
systems, Table 1.1 lists the most significant laws on the topic, which a software engineer
should always keep in mind.

1.2 WHAT DOES REAL TIME MEAN?

1.2.1 THE CONCEPT OF TIME

The main characteristic that distinguishes real-time computing from other types of
computation is time. '

}The word time means that the correctness of the system depends not only on the logical
result of the computation but also on the time at which the results are produced.

Theh word r‘eal indicates that the reaction of the systems to external events must occur
during their evolution. As a consequence, the system time (internal time) must be

me'c?sured using the same time scale used for measuring the time in the controlled
environment (external time).

Although the term real time is frequently used in many application fields, it is subject
to different interpretations, not always correct. Often, people say that a C(;ntrol sysiem
operates iq real time if it is able to quickly react to external events. According to this
interpretation, a system is considered to be real-time if it is fast. The term fast, however.
has a relative meaning and does not capture the main properties that characterize these’
types of systems. '

A General View

Murphy’s General Law

If something can go wrong, it will go wrong.

Murphy’s Constant

Damage to an object is proportional to its value.

Naeser’s Law

One can make something bomb-proof, not Jjinx-proof.

Troutman Postulates
1. Any software bug will tend to maximize the damage.

2. The worst software bug will be discovered six months after the field test.

Green’s Law

If a system is designed to be tolerant to a set of faults, there will always exist
an idiot so skilled to cause a nontolerated fault.

Corollary

Dummies are always more skilled than measures taken to keep them from
harm.

Johnson’s First Law

If a system stops working, it will do it at the worst possible time.

Sodd’s Second Law

Sooner orlater, the worst possible combination of circumstances will happen.

Corollary

A system must always be designed to resist the worst possible combination

of circumstances.

Table 1.1 Murphy’s laws on real-time systems.

CHAPTER 1

In nature, living beings act in real time in their habitat independently of their speed
For example, the reactions of a turtle to external stimuli coming from its natural h:bitai
are as effective as those of a cat with respect to its habitat. In fact, although the turt]

is much slower than a cat, in terms of absolute speed, the events th;t it has to deal witlel

are proportxonal to the a.cti.ons it can coordinate, and this is a necessary condition for
any animal to survive within an environment.

On‘the conFrary, if the environment in which a biological system lives is modified
by introducing events that evolve more rapidly than it can handle, its actions will :

longer be as effective, and the survival of the animal is compromised. Thus, a _ﬂﬁ
fly can still be caught by a fly-swatter, a mouse can be captured by .a trap ,orqau 1ct
can be run down by a speeding car. In these examples, the fly-swatter, the ’tra a(l::::l
the car represent unusual and anomalous events for the animals, out of ,their rag, f
capabilities, which can seriously jeopardize their survival. The cartoons in Fi ge10

schematically illustrate the concept expressed above. S

S

-~

SQUEAK
s "\
- =
@)
s
82
/[\ CLP‘NG . /
i NN
7 e
©

@

Figure 1.1) Both the mouse (a) and the turtle (b) behave in real time with respect to their
fxatural 'habltat. Nevertheless, the survival of fast animals such as a mouse or a fly can b
jeopardized by events (c and d) quicker than their reactive capabilities. § ©

The previous examples show that the concept of time is not an intrinsic property of

f:ontr(?l system, either natural or artificial, but that it is strictly related to the en\f)i e
in which the system operates. It does not make sense to design a real-time ¢ mnm'em
system for flight control without considering the timing characteristics of th::) :I;::Irt:;'f

A General view

Hence, the environment is always an essential component of any real-time system.
Figure 1.2 shows a block diagram of a typical real-time architecture for controlling a

physical system.

1 1
! [
| Control |
! System ‘l
|

1 I
l |
[!
| 1
| 1
: Sensory Actuation :
1 System System 1
1 [
1 !

ENVIRONMENT

Figure 1.2 Block diagram of a generic real-time control system.

Some people erroneously believe that it is not worth investing in real-time research
because advances in computer hardware will take care of any real-time requirements.
Although advances in computer hardware technology will improve system throughput
and will increase the computational speed in terms of millions of instructions per second
(MIPS), this does not mean that the timing constraints of an application will be met
automatically. In fact, whereas the objective of fast computing is to minimize the
average response time of a given set of tasks, the objective of real-time computing is
to meet the individual timing requirement of each task [Sta88].

However short the average response time can be, without a scientific methodology we
will never be able to guarantee the individual timing requirements of each task in all
possible circumstances. When several computational activities have different timing
constraints, average performance has little significance for the correct behavior of the
system. To better understand this issue, it is worth thinking about this little story *:

2From John Stankovic’s notes.

8 CHAPTER 1

There was a man who drowned crossing a stream with an average depth of
six inches.

Hence, rather than being fast, a real-time computing system should be predictable. And
one safe way to achieve predictability is to investigate and employ new methodologies
at every stage of the development of an application, from design to testing.

At the process level, the main difference between a real-time and a non-real-time task is
that a real-time task is characterized by a deadline, which is the maximum time within
which it must complete its execution. In critical applications, a result produced after
the deadline is not only late, but wrong! Depending on the consequences that may
occur because of a missed deadline, real-time tasks are usually distinguished in two
classes, hard and soft:

® A real-time task is said to be hard if missing its deadline may cause catastrophic
consequences on the environment under control.

® Areal-timetask is said to be soft if meeting its deadline is desirable for performance
reasons, but missing its deadline does not cause serious damage to the environment
and does not jeopardize correct system behavior.

A real-time operating system that is able to handle hard real-time tasks is called a hard
real-time system. Typically, real-world applications include hard and soft activities,
and therefore a hard real-time system should be designed to handle both hard and soft
tasks using two different strategies. In general, when an application consists of a hybrid
task set, the objective of the operating system should be to guarantee the individual
timing constraints of the hard tasks while minimizing the average response time of the
soft activities.

Examples of hard activities that may be present in a control application include

Sensory data acquisition,

m Detection of critical conditions,

m Actuator servoing,

= Low-level control of critical system components, and

® Planning sensory-motor actions that tightly interact with the environment.

A General View 9

Examples of soft activities include

m The command interpreter of the user interface,
= Handling input data from the keyboard,

m Displaying messages on the screen,

m Representation of system state variables,

®= Graphical activities, and

m Saving report data.

1.2.2 LIMITS OF CURRENT REAL-TIME SYSTEMS

Most of the real-time computing systems used to support control applications are based
on kernels [AL86, Rea86, HHPD87, SBG86], which are modified versions of time-
sharing operating systems. As a consequence, they have the same basic features found
in timesharing systems, which are not suited to support real-time activities. The main
characteristics of such real-time systems include

n Multitasking. A support for concurrent programming is provided through a set of
system calls for process management (such as create, activate, terminate, delay,
suspend, and resume). Many of these primitives do not take time into account
and, even worse, introduce unbounded delays on tasks’ execution time that may

cause hard tasks to miss their deadlines in an unpredictable way. | b=
a e s a PP«

m Priority-based scheduling. Such a scheduling mechanism is quite flexible, since
it allows the implementation of several strategies for process management just by
changing the rule for assigning priorities to tasks. Nevertheless, when application
tasks have explicit time requirements, mapping timing constraints into a set of
priorities may not be simple, especially in dynamic environments. The major
problem comes from the fact that these kernels have a limited number of priority
levels (typically 128 or 256), whereas task deadlines can vary in a much wider
range. Moreover, in dynamic environments, the arrival of a new task may require
remapping the entire set of priorities.

m Ability to quickly respond to external interrupts. This feature is usually ob-
tained by setting interrupt priorities higher than process priorities and by reducing
the portions of code executed with interrupts disabled. Note that, although this

\

10 CHAPTER 1

approach increases the reactivity of the system to external events, it introduces
unbounded delays on processes’ execution. In fact, an application process will be
always interrupted by a driver, even though it is more important than the device
that is going to be served. Moreover, in the general case, the number of interrupts
that a process can experience during its execution cannot be bounded in advance,
since it depends on the particular environmental conditions.

® Basic mechanisms for process communication and synchronization. Binary
semaphores are typically used to synchronize tasks and achieve mutual exclusion

on shared resources. However, if no access protocols are used to enter critical

+ isections, classical semaphores can cause a number of undesirable phenomena,

- such as'priority inversion, chained blocking, and deadlock, which again introduce
unbounded delays on real-time activities.

» Small kernel and fast context switch. This feature reduces system overhead,
thus improving the average response time of the task set. However, a small average
response time on the task set does not provide any guarantee on the individual
task deadlines. On the other hand, a small kernel implies limited functionality,
which affects the predictability of the system.

® Support of a real-time clock as an internal time reference. This is an essential
feature for any real-time kernel that handles time-critical activities that interact
with the environment. Nevertheless, in most commercial kernels this is the only
mechanism for time management. In many cases, there are no primitives for
explicitly specifying timing constraints (such as deadlines) on tasks, and there is
no mechanism for automatic activation of periodic tasks.

From the above features, it is easy to see that those types of real-time kernels are devel-
oped under the same basic assumptions made in timesharing systems, where tasks are
considered as unknown activities activated at random instants. Except for the priority,
no other parameters are provided to the system. As a consequence, computation times,
timing constraints, shared resources, or possible precedence relations among tasks are
not considered in the scheduling algorithm, and hence no guarantee can be performed.

The only objectives that can be pursued with these systems is a quick reaction to
external events and a “small” average response time for the other tasks. Although
this may be acceptable for some soft applications, the lack of any form of guarantee
precludes the use of these systems for those control applications that require stringent
timing constraints that must be met to ensure safe behavior of the system.

A General View 11

1.2.3 DESIRABLE FEATURES OF REAL-TIME
SYSTEMS

Complex control applications that require hard tifrﬁng constraints on tasksl’ .execution
need to be supported by highly predictable operating systems. Predictability can I?e
achieved only by introducing radical changes in the basic design paradigms found in
classical timesharing systems.

For example, in any real-time control system, the code of each task is known a pri.ori
and hence can be analyzed to determine its characteristics in terms of computation
time, resources, and precedence relations with other tasks. Therefore, there is no
need to consider a task as an unknown processing entity; rather, its parameters can be
used by the operating system to verify its schedulability within the specified timing
requirements. Moreover, all hard tasks should be handled by r‘he scheduler to meet
their individual deadlines, not to reduce their average response time.

In addition, in any typical real-time application, the various control activities can be
seen as members of a team acting together to accomplish one common goal, which can
be the control of a nuclear power plant or an aircraft. This means that tasks are not all
independent and it is not strictly necessary to support independent address spaces.

In summary, there are some very important basic properties that real-time systems must
have to support critical applications. They include

q =4
m Timeliness. Results have to be correct not only in their value but also in the
time domain. As a consequence, the operating system must provide specific
kerne! mechanisms for time management and for handling tasks with explicit

time constraints and different criticality.

s Design for peak load. Real-time systems must not collapse when they are sub-
ject to peak-load conditions, so they must be designed to manage all anticipated
scenarios.

m Predictability. To guarantee a minimum level of performance, the system must
be able to predict the consequences of any scheduling decision. If some task
cannot be guaranteed within its time constraints, the system must notify this fact
in advance, so that alternative actions can be planned in time to cope with the

event.

w Fault tolerance. Single hardware and software failures should not cause the
system to crash. Therefore, critical components of the real-time system have to
be designed to be fault tolerant.

T CHAPTER 1

® Maintainability. The architecture of a real-time system should be designed ac-

cording to a modular structure to ensure that possible system modifications are
easy to perform.

1.3 ACHIEVING PREDICTABILITY

One of the most important properties that a hard real-time system should have is pre-
dictability [SR90]. That is, based on the kernel features and on the information associ-
ated with each task, the system should be able to predict the evolution of the tasks and
guarantee in advance that all critical timing constraints will be met, The reliability of
the guarantee, however, depends on a range of factors, which involve the architectural
features of the hardware and the mechanisms and policies adopted in the kernel, up to
the programming language used to implement the application.

The first component that affects the predictability of the schedulin
itself. The internal characteristics of the processor,
ing, cache memory, and direct memory access (D
of nondeterminism. Infact, although these featu
of the processor, they introduce nondeterministic
of the worst-case execution times, Other importa
cution of the task set are the internal characterist
scheduling algorithm, the synchronization mec
memory management policy, the communicatio
mechanism.

g is the processor
such as instruction prefetch, pipelin-
MA) mechanisms, are the first cause
res improve the average performance
factors that prevent a precise analysis
nt components that influence the exe-
ics of the real-time kernel, such as the
hanism, the types of semaphores, the
nsemantics, and the interrupt handling

In the rest of this chapter, the main sources of nondeterminism are considered in more
detail, from the physical level up to the programming level,

131 DMA

Directmemory access (DMA) is a technique used by many peripheral devices to transfer
data between the device and the main memory. The purpose of DMA is to relieve the

trolling the input/output (/O) transfer.
¢ same bus, the CPU has to be blocked
sfer. Several different transfer methods

central processing unit (CPU) of the task of con
Since both the CPU and the I/O device share th
when the DMA device is performing a data tran
exist.

19
A General view

One of the most common methods is called cycle stealing, according to wh}ch :i:e gﬁi
device steals a CPU memory cycle in order to execute a dfita transfer. Dlgul)gHe A
operation, the /O transfer and the CPU program execution run in parallel. ﬂ]c;\n]/) o is,
if the CPU and the DMA device require a memory cycle at the samelnr-ne, -
assigned to the DMA device and the C?U waits until the' D'MAhcyc eisc ! nFes the.
Using the cycle stealing method, there is no way of predlctfng owthmansy i e
C'PU will have to wait for DMA during the execution of a task; hence the resp

of a task cannot be precisely determined.

A possible solution to this problem is.to.adopt a different technique, .\;vh;cht;gqﬁz; ::13

vice to use the memory fime-slice method [SR88]. According to hlsCPU and,
each meﬂib;; cycle is split into L\yg_”;_{gljg__c_g?nt_.t_@g,sm: one_reserved f01l't e: e
the other for the DMA device. This solution is more expensive than ;yc e :1 ea : %) =
more predictable. In fact, since the CPU and DMA deylce do not conflict, lt)e € re gicted
time of the tasks do not increase due to DMA operations and hence can be pre e

with higher accuracy.) & f o .=
g &,{;6 G’}'Lﬁéé-’_‘j%') = ?’)_Qg;lk < e

: A boaco L il ya i3] ,
132 CACHE 1 paw Lo C

The cache is a fast memory that is inserted as a buffer b-etweer} the CP"U Ialncll thctr;:jn;if(i:

access memory (RAM) to speed up processgs’ cxec_:u‘tlon. It is physically loca e;n ane

the memory management unit (MMU) and is not v1sﬂ.)lc a.t the soft_wvare p;'loglza ; aIi

level. Once the physical address of a memory loccl:a}tuzﬁeli ichtzrr?;ll]::is, td :t ! :i:e\:-icad
r the requested information is stored in 1 s

Erl:)c;ktshz S:ct:tlllz; other\?iise the information is taken frorg the RAM, ?d thet clozi?(: nosf

the accessed location is copied into the cache along with a set of a JaCfll'll o] uested.

In this way, if the next memory access is d0n.e to one of these locations, the req

data can be read from the cache, without having to access the memory.

This buffering technique is motivated by the fact that statistically the mc;lst freq(;i;li:
accesses to. the main memory are limited to a small address spe'lcltl:? a1 ;;w zn;r:mor
called program locality. For example, it has been observed that w1td a b mem 3())’
and a 8 Kbyte cache, the data requested from a program are found in the

percent of the time (hif ratio).

The need for having a fast cache appeared when memory was much slower. ;I;Od?,

however, since memory has an access time almost comparable to that of .the cac ;3, tte

main mo,tivation for having a cache is not only to speed up p.rocess'execunon but also to
educe conflicts with other devices. In any case, the cache is considered as a processor
r .« e "

attribute that speeds up the activities of a computer.

CHAPTER 1

In real-time systems, the cache introduces some degree of nondeterminism. In fact,
although statistically the requested data are found in the cache 80 percent of the time,
it is also true that in the other 20 percent of the cases the performance degrades. This
happens because, when data is not found in the cache (cache fault or miss), the access
time to memory is longer, due to the additional data transfer from RAM to cache.

R Furthermore, when performing write operations into memory, the use of the cache is
even more expensive in terms of access time, because any modification made on the
cache must be copied to the memory in order to maintain data consistency. Statistical
observations show that 90 percent of the memory accesses are for read operations,
whereas only 10 percent are for writes.

Statistical observations, however, can provide only an estimation of the average behav-
ior of an application but cannot be used for deriving worst-case bounds. To perform
worst-case analysis, in fact, we should assume a cache fault for each memory ac-
cess. The consequence of this is that, to obtain a higher degree of predictability at
the low level, it would be more efficient to have processors without cache or with the
cache disabled. In other approaches, the influence of the cache on the task execution
time is taken into account by a multiplicative factor, which depends on an estimated
percentage of cache faults. A more precise estimation of the cache behavior can be

achieved by analyzing the code of the tasks and estimating the execution times by using
a mathematical model of the cache.

1.3.3 INTERRUPTS

Interrupts generated by 1/ peripheral devices represent a big problem for the pre-
dictability of a real-time system because, if not properly handled, they can introduce
unbounded delays during process execution. In almost any operating system, the ar-
tival of an interrupt signal causes the execution of a service routine (driver), dedicated
to the management of its associated device. The advantage of this method is to encap-
‘sulate all hardware details of the device inside the driver, which acts as a server for
the application tasks. For example, in order to get data from an /O device, each task
‘must enable the hardware to generate interrupts, wait for the interrupt, and read the
data from a memory buffer shared with the driver, according to the following protocol:

<enable device interrupts>
<wait for interrupt>
| <get the result>

L.

A General View 15

In many operating systems, interrupts are served using a ﬁxe?d l?riori'fy scheme, accord-
ing to which each driver is scheduled based on a static priority, higher tl_lan process
priorities. This assignment rule is motivated by the fact that interrupt handling routines
usually deal with I/O devices that have real-time constraints, whereas _most apphc_:atlo_n
programs do not. ,In the context of real-time systems, however, this assurgpnon is
certainly not valid, because a control process could be more urgent th‘an an interrupt
handling routine. Since, in general, it is very difficult to bound a priori the numbe; of
interrupts that a task may experience, the delay introduced by the interrupt mechanism
on tasks’ execution becomes unpredictable.

In order to reduce the interference of the drivers on the application tasks and still
perform I/0 operations with the external world, the peripheral devis:es must be handled
in a different way. In the following, three possible techniques are illustrated.

APPROACH A .

The most radical solution to eliminate interrupt imerference? is to disable all. external
interrupts, except the one from the timer (necessary for ba51.c S).lstem operatlpns). In
this case, all peripheral devices must be handled by the appllcat'mn tasks,. which have
direct access to the registers of the interfacing boards. Since no interrupt is generated,
data transfer takes place through polling.

The direct access to /O devices allows great programming flexibility and climinaltes
the delays caused by the drivers’ execution. As aresult, the time needed for transfenlmg
data can be precisely evaluated and charged to the task that performs the opc?ratlon.
Another advantage of this approach is that the kernel does not need to be modified as
the I/O devices are replaced or added.

The main disadvantage of this solution is a low processor efﬁcier.lcy on /O operatif)ns,
due to the busy wait of the tasks while accessing the device registers. Another minor
problem is that the application tasks must have the knowledge of.all low-level details
of the devices that they want to handle. However, this can b(? easily solved by encap-
sulating all device-dependent routines in a set of library functions that can bg called by
the application tasks. This approach is adopted ‘in RK, aresearch hard real-time kernel
designed to support multisensory robotics applications [LKP88].

APPROACH B

As in the previ(;us approach, all interrupts from external devices are disabled, except
the one from the timer. Unlike the previous solution, however, the devices are not

o CHAPTER 1

directly handled by the application tasks but are managed in turn by dedicated kernel
routines, periodically activated by the timer. '

This approach eliminates the unbounded delays due to the execution of interrupt drivers
and confines all I/O operations to one or more periodic kernel tasks, whose compu-
tational load can be computed once for all and taken into account through a specific
utilization factor. In some real-time systems, /O devices are subdivided into two
classes based on their speed: slow devices are multiplexed and served by a single
cyclical /O process running at a low rate, whereas fast devices are served by dedicated
periodic system tasks, running at higher frequencies. The advantage of this approach
with respect to the previous one is that all hardware details of the peripheral devices can

be encapsulated into kernel procedures and do not need to be known by the application
tasks.

Because the interrupts are disabled, the major problem of this approach is due to the busy
wait of the kernel /0 handling routines, which makes the system less efficient during
/O operations. With respect to the previous approach, this case is characterized by a
higher system overhead, due to the communication required among the application tasks
and the /O kernel routines for exchanging /O data. Finally, since the device handling
routines are part of the kernel, it has to be modified when some device is replaced or
added. This type of solution is adopted in the MARS system [DRSKS89, KDK *89].

APPROACH C

A third approach that can be adopted in real-time systems to deal with the /O devices is
to leave all externay interrupts enabled, while reducin g the drivers to the least possible
size. According tos this method, the only purpose of each driver is to activate a proper
task that will take care of the device management. Once activated, the device manager
task executes under the direct control of the operatilng system, and it is guaranteed and
scheduled just like any other application task. In this way, the priority that can be
assigned to the dewvice handling task is completely independent from other priorities
and can be set according to the application requirements. Thus a control task can have
a higher priority than a device handling task.

The idea behind thi s approach is schematically illustrated in Figure 1.3. The occurrence
of event E generate:s an interrupt, which causes the execution of a driver associated with
that interrupt. Unl jke the traditional approach, this driver does not handle the device
directly but only activates a dedicated task, .J g, which is the actual device manager.

The major advantage of this approach with respect to the previous ones is to eliminate
the busy wait durimg /O operations. Moreover, compared to the traditional technique,

177
- A General view

Driver associated TaskJ
with event E
cventE_:-? Activation — Handling
of task of event
Ig E

Figure 1.3 Activation of a device-handling task.

the unbounded delays introduced by the drivers during tasks’ executi?n are also drasti-
] cally reduced (although not completely removed), so the task execution times become

more predictable. As a matter of fact, a little unbounde‘d overhead due to t!le execu:l(l)rlllt
of the small drivers still remains in the s.ystem, and it shoulfi be taken 1rlt_0a:sltc;:ases
in the guarantee mechanism. However, it can be neglected in 1;‘11?;; 9praf: u;{ ARTIK.
This type of solution is adopted in the ARTS system [TK88, 1, in

[BDN93, But93], and in.SPRING [SR91].

1.34 SYSTEM CALLS

System predictability also depends on how the kt.emel. primitives are lim[ﬁcl:c:;:g:c; II}I;
order to precisely evaluate the worst-case e)_(ecufuon time of each task, a el call
should be characterized by a bounded execution time, us§d by the guargpt.ee mec i
while performing the schedulability analysis of the apphcatlon.. Irf P:ld Ltlon, in H(; for i€
simplify this analysis, it would be desirable thrfu each kernel primitive be t;;lrezxelz uﬁon.
In fact, any nonpreemptable section could possibly delay Fhe activation or the

of critical activities, causing a timing fault to hard deadlines.

1.3.5 SEMAPHORES

I'he typical semaphore mechanism used in traditipqal opc?rating systems 1{5 ri:' :151:22
for implementing real-time application_s beca.us¢': it is sut.)Ject to the t;)monl yw— ersio
phenomenon, which occurs when a hlgh-_prfon_ty tasl.< is blocked by al % :VOidez
task for an unbounded interval of time. Priority mvejrs‘lop must absoluttle y :c e
in real-time systems, since it introduces nondeterministic delays on the ex

eritical tasks.

CHAPTER 1

For the mutual exclusion problem, priority inversion can be avoided by adopting par-
ticular protocols that must be used every time a task wants to enter a critical section.
For instance, efficient solutions are provided by Priority Inheritance [SRL9O], Priority
Ceiling [SRL90], and Stack Resource Policy [Bak91]. These protocols wi,ll be de-
scribed and analyzed in Chapter 7. The basic idea behind these protocols is to modify
the priority of the tasks based on the current resource usage and control the resource
assignment through a test executed at the entrance of each critical section. The aim of
the test is to bound the maximum blocking time of the tasks that share critical sections,

The implcx_ncntation of such protocols may requires a substantial modification of the
kernel, which concerns not only the wait and signal calls but also some data structures
and mechanisms for task management.

1.3.6 MEMORY MANAGEMENT

Similarly to other kernel mechanisms, memory management techniques must not intro-
duce nondeterministic delays during the execution of real-time activities. For example
demand paging schemes are not suitable for real-time applications subject to rigid time:
constraints, because of the large and unpredictable delays caused by page faults and
page replacements. Typical solutions adopted in most real-time systems adhere to a
memory segmentation rule with a fixed memory management scheme. Static parti-

tioning is particularly efficient when application programs require similar amounts of
memory.

In general, static allocation schemes for resources and memory management increase
the predictability of the system but reduce its flexibility in dynamic environments
Therefore, depending on the particular application requirements, the system designer'
has to make the most suitable choices for balancing predictability versus flexibility.

1.3.7 PROGRAMMING LANGUAGE

quides the hardware characteristics of the physical machine and the internal mech-
a{usms implemented in the kernel, there are other factors that can determine the pre-
dictability of a real-time system. One of these factors is certainly the programming
language used to develop the application. As the complexity of real-time systems

increases, high demand will be placed on the programming abstractions provided by
languages.

A General view

Unfortunately, current programming languages are not expressive enough to prescribe
gertain timing behavior and hence are not suited for realizing predictable real-time
upplications. For example, the Ada language (demanded by the Department of Defense
of the United States for implementing embedded real-time concurrent applications)
does not allow the definition of explicit time constraints on tasks’ execution. The delay
statement puts only a lower bound on the time the task is suspended, and there is no
language support to guarantee that a task cannot be delayed longer thana desired upper
bound. The existence of nondeterministic constructs, such as the select statement,

* prevents the performing of a reliable worst-case analysis of the concurrent activities.

Moreover, the lack of protocols for accessing shared resources allows a high-priority
task to wait for a low-priority task for an unbounded duration. As a consequence, if
u real-time application is implemented using the Ada language, the resulting timing
behavior of the system is likely to be unpredictable.

Recently, new high-level languages have been proposed to support the development
of hard real-time applications. For example, Real-Time Euclid [KS86] is a program-
ming language specifically designed to address reliability and guaranteed schedula-
bility issues in real-time systems. To achieve this goal, Real-Time Euclid forces the
programmer to specify time bounds and timeout exceptions in all loops, waits, and
device accessing statements. Moreover, it imposes several programming restrictions,
such as the ones listed below: S e ’

® ' Absence of dynamic data structures. Third-generation languages normally per-
mit the use of dynamic arrays, pointers, and arbitrarily long strings. In real-time
* languages, however, these features must be eliminated because they would pre-

vent a correct evaluation of the time required to allocate and deallocate dynamic
structures.) T ——

® Absence of recursion. If recursive calls were permitted, the schedulability ana-
lyzer could not determine the execution time of subprograms involving recursion
or how much storage will be required during execution.

m Time-bounded loops. In order to estimate the duration of the cycles at compile
time, Real-Time Euclid forces the programmer to specify the maximum number
of iterations for each loop construct.

Real-Time Euclid also allows the classification of processes as periodic or aperiodic
and provides statements for specifying task timing constraints, such as activation time
and period, as well as system timing parameters, such as the time resolution.

Another high-level language for programming hard real-time applications is Real-
Time Concurrent C [GR91]. It extends Concurrent C by providing facilities to specify

20 CHAPTER 1

periodicity and deadline constraints, seek guarantees that timing constraints will be
met, and perform alternative actions when either the timing constraints cannot be met
or guarantees are not available. With respect to Real-Time Euclid, which has been
designed to support static real-time systems, where guarantees are made at compile
time, Real-Time Concurrent C is oriented to dynamic systems, where tasks can be
activated at run time. Another important feature of Real-Time Concurrent C is that it
permits the association of a deadline with any statement, using the following construct:

within deadline (d) statement-1
[else statement-2]

If the execution of statement-1 starts at time ¢ and is not completed at time (t+d),
then its execution is teiminated and statement-2, if specified, is executed.

Clearly, any real-time construct introduced in a language must be supported by the
operating system through dedicated kernel services, which must be designed to be
efficient and analyzable. Among all kernel mechanisms that influence predictability,
the scheduling algorithm is certainly the most important factor, since it is responsible
for satisfying timing and resource contention requirements.

In the rest of this book, several scheduling algorithms are illustrated and analyzed
under different constraints and assumptions. Each algorithm is characterized in terms

of performance and complexity to assist a designer in the development of reliable
real-time applications.

Exercises

1.1 Explain the difference between fast computing and real-time computing,

1.2 What are the main limitations of the current real-time kernels for the develop-
ment of critical control applications?

1.3 Discuss the features that a real-time system should have for exhibiting a pre-
dictable timing behavior.

1.4 Describe the approches that can be used in a real-time system to handle periph-
eral I/O devices in a predictable fashion.

1.5 Which programming restrictions should be used in a programming language
to permit the analysis of real-time applications? Suggest some extensions that
could be included in a language for real-time systems.

BASIC CONCEPTS

2.1 INTRODUCTION

Over the last few years, several algorithms and rqethodologies have been pgposed in
the literature to improve the predictability ofreal-time gystems. Inorder to prisent these
results we need to define some basic concepts th_at will be usgd throughm.l‘ the book.
We begin with the most important software gntnty treated by any opc.rau,g syster.n,
the process. A process is a computation that is executed by the CPU 1% asequeqtl?}
tashion. In this text, the terms process anc.l tfzsk are used as synonyms. Oyever, it is
worth saying that some authors prefer to distinguish thf:rn and d_eﬁne a taslf: ‘or thread)
as a sequential execution of code that does not sus:p.end itself during executic, whereas
a process is a more complex computational activity, that can be composej by many

tasks.

When a single processor has to execute a set _of concurrent ta.sks — that is task_s that
can overlap in time — the CPU has to be a381gned to the various tasks a‘cordmg to
a predefined criterion, called a scheduling poizcy. The set of rules. that, a any time,
determines the order in which tasks are executed is called a scheduling alngthm_ .The
specific operation of allocating the CPU to a task selected by the schedulin; a]gorithm
is referred to as dispatching.

Thus, a task that could potentially execute on the CP‘U' can be either in ‘?‘f:ution, if it
has been selected by the scheduling algorithm, or waiting for the CPU, if &other tagk
is executing. A task that can potentially execute on the'p_roccssor, mdepen(em.iy on its
actual availability, is called an active task. A task waiting fgr the procesyy is called
a ready task, whereas the task in execution is called a running task. All‘.mdy tasks
waiting for the processor are kept in a queue, called ready queue. Operatyg systems
that handle different types of tasks may have more than oPe ready queue.

22 ‘ CHAPTER 2

activation
E———

termination

dispatching

scheduling

= preemption

Figure 2.1 Queue of ready tasks waiting for execution.

In many operating systems that allow dynamic task activation, the running task can
be interrdpted at any point, so that a more important task that arrives in the system
can immediately gain the processor and does not need to wait in the ready queue. In
this case, the running task is interrupted and inserted in the ready queue, while the
CPU is asmgned to the most important ready task which just arrived. The operation of
suspending the running task and inserting it into the ready queue is called preemption.

Figure 2.1 schematically illustrates the concepts presented above. In dynamic real-time
systems, preemption is important for three Teasons [SZ92]:

® Tasks performing exception handling may need to preempt cx:stmg tasks so that
responses to exceptions may be issued in a timely fashion.

s ‘When application tasks have different levels of critica]ity (expressing task im-
portance), preemption permits to anticipate the execution of the most critical
activities.

= More efficient schedules can be produced to improve system responsiveness.

Given a set of tasks, J = {Ji,...,J}, a schedule is an assignment of tasks to the
processor, so that each task is executed until completion. More formally, a schedule can
be defined as a function o : R* — N such that Vt € R¥, 3t;, 1, such that ¢ € [ty, ¢,)
and Vt' € [t1,t2) o(t) = o(t'). In other words, o(t) is an integer step function and
o(t) = k, with ¥ > 0, means that task J is executing at time ¢, while o/() = 0 means
that the CPU is idle. Figure 2.2 shows an example of schedule obtained by executing
three tasks: Jy, Jo, Js.

m Attimes ¢, ta, t3, and ¢4, the processor performs a context switch.

= Eachinterval [t;, ?;11) in which o (2) is constant is called time slice. Interval [z,¥)
identifies all values of ¢ such thatz < ¢ < y.

u

A preemptive schedule is a schedule in which the running task can be arbitrarily
suspended at any time, to assign the CPU to another task according to a predefined
scheduling policy. In preemptive schedules, tasks may be executed in disjointed
interval of times.

Basic Concepts : i 23 ‘

idle : idle

- - =

}
< T
¢ - . | e

. Figure 2.2 Schedule obtained by executing three tasks J, J2, and J3.

m A schedule is said to be feasible if all tasks can be completed according to a set
of specified constraints.

® A set of tasks is said to be schedulable if there exists at least one algorithm that
can produce a feasible schedule.

An example of preemptive schedule is shown in Figure 2.3.

22 TYPES OF TASK CONSTRAINTS |

Typical constraints that can be specified on real-time tasks are of three classes: timing
constraints, precedence relations, and mutual exclusion constraints on shared resources.

2.2.1 TIMING CONSTRAINTS

Real-time systems are characterized by computational activities with stringent timing
constraints that must be met in order to achieve the desired behavior. A typical timing
constraint on a task is the deadline, which represents the time before which it should
gomplete its execution without causing any damage to the system. If a deadline is
specified with respect to the arrival time, it is called a relative deadline, whereas if it
is specified with respect to time zero, it is called an absolute deadline. Depending on
the consequences of a missed deadline, real-time tasks are usually distinguished in two

clagses:

24 CHAPTER 2

o(t)

3 7 f

9

1

Figure 2.3 Example of a preemptive schedule.

m Hard. A task is said to be hard if a completion after its deadline can cause
catastrophic consequences on the system. In this case, any instance of the task
should be guaranteed a priori in the worst-case scenario.

’

m Soft. A task is said to be soft if missing its deadline decreases the performance
of the system but does not jeopardize its correct behavior.

In general, a real-time task J; can be characterized by the following parameters:

® Arrival time a;: is the time at which a task becomes ready for execution; it is
also referred as request time (or release time) and indicated by r;;

Computation time C;: is the time necessary to the processor for executing the
task without interruption;

m Absolute Deadline d;: is the time before which a task should be completed to
avoid damage (if hard), or performance degradation (if soft);

m Relative Deadline D;: is the difference between the absolute deadline and the
request time: D; = d; — 7;;

m Start time s;: is the time at which a task starts its execution;

N IC LTI R ETRS

aj i Fi :

Figure 2.4 Typical parameters of a real-time task.

s Finishing time f;: is the time at which a task ﬁnishes its execution;

[‘ Response time R;: is the difference between the finishing time and the request
time: Ri=fi—7is ., . =

s Criticality: is a pa?;r;ge; ;e%:ft?gﬁ the consequences of missing the deadline
(typically, it can be hard or soft);

s Value v;: represents the relative importance of the task with respect to the other
tasks in the system; ‘

m Lateness .Li: L; = f; — d; represents the delay of a task compl'ctior_l with rcspegt
to its deadline; note that if a task completes before the deadline, its lateness 1S
negative; |

s Tardiness or Exceeding time B;: B; = maz(0, L;) is the time a task stays active

after its deadline;

Laxity or Slack time X Xs=di — ai — C.,- is the Ipaximum time a task can be

delayed on its activation to complete within its deadline.

Some of the parameters defined above are illustrated in Figure 24.

Another timing characteristic that can be specified on a real-time -t?(ctrar;ceer;z ;1:
regularity of its activation. In particular, tasks can be .deﬁned. as perio ; lzgdoinsfances 0;
Periodic tasks consist of an infinite sequence of identical activities, 1;:al dinsuances
Jjobs, that are regularly activated at a constant rate. For thp ;ak'e gbc :(1; Y

on, a periodic task will be denoted by 7;, whereas an aperiodic Job by /-

The activation time of the first periodic instance i§ called gha;e. It;) b l.S lhz:kpiai()a Z?f
the periodic task 7;, the activation time of the kth instance 15 given by qb‘, i el ca;l,
where T; is called period of the task. In many Pracncal cases, alpe_no T
be completely characterized by its computation me C; and its TS ative) t:)

ften set equal to the period). Moreover, the parameters C nlie D; ar‘e consider .
(; nstant for each instance. ‘Aperiodic tasks also consist of an infinite sequence 0
i;c;(t)ical jobs; however, their activation is not regular.

—’—

26 CHAPTER 2
first D; kth
instance instance
T | M.y | : ,
-
b T, ¢i+@DT 4
(a)
Dj D;
P S a— -———
| | | i {
Ii | . | . ;
aj) djp aj dp
(b)

Figure 2.5 Sequence of instances for a periodic (a) and an aperiodic task (b).

An aperiodic task where consecutive jobs are separated by a minimum interarrival time

is called a sporadic task. Figure 2.5 shows an example of a periodic and an aperiodic
task.

222 PRECEDENCE CONSTRAINTS

In certain applications, computational activities cannot be executed in arbitrary order
but have to respect some precedence relations defined at the design stage. Such prece-
dence relations are usually described through a directed acyclic graph G, where tasks
are represented by nodes and precedence relations by arrows. A precedence graph G
induces a partial order on the task set.

m The notation J, < J; specifies that task J, is a predecessor of task Jy, meaning
that G contains a directed path from node J, to node Jj. -

m The notation J, — Jp specifies that task J, is an immediate predecessor of Jp,
meaning that G contains an arc directed from node J, to node Jj.

Figure 2.6 illustrates a directed acyclic graph that describes the precedence constraints
among five tasks. From the graph structure we observe that task J is the only one that
can start executing, because it does not have predecessors. Tasks with no predecessors
are called beginning tasks. As Jy is completed, either J or J3 can start. Task J4 can

27

Concepts
3
1, X T2
oI — Ja
I I3

I X s
‘ I, 7% Ja

1a ¥s

Figure 2.6 Precedence relations among five tasks.

only when Jz 18 completed, whereas J must wait the _completion of Jp and Js3.
ks with no successors, a8 J, and Js, are called ending tasks.

j n arder to understand how precedence graphs can be derived from tasks’ ?eliltlor;s\;il:t
\n consider the application illustrated in Figure 2.7.. Here, a number of ob__@c j 1:1 - mg
on i conveyor belt must be recognized apd classaﬁgd using a stcr;o \;lxsm yniﬁm,1
~ gonsisting of two cameras mounted in a sultaple loc'fmon. Suppose that the re:.cogof N
us is carried out by integrating the two-dimensional features of the top view

objects with the height information extracted by the pixel d‘ispa'.rity on the two i.mzscls)s.
As 1 consequence, the computational activities of the application can be organized by

defining the following tasks:

s 'Twotasks(one for each camera) dedicated to image acquisition, whose ot?jectlyc 1;
{o transfer the image from the camera to the processor memory (they are identifie

by acql and acq2); |
i - i ocessing (typica

1 z?éiéi‘?fis(S?ffi?;‘lfL‘t‘ii’i‘;ii?e??iéiﬁéi"éfg’i?ﬁ e o o eduion

' edge detection; we identify these tasks as edgel and edge2);

s A task for extracting two-dimensional features from the object contours (it is

denoted as shape); _

s A task for computing the pixel disparities from the two images (it is denoted as
disp); ‘

s A task for determining the object height from the results achieved by the disp task
(it is denoted as H);

CHAPTER 2

Figure 2.7 Industrial application which requires a visual recognition of cbjects on a con-
veyor belt. .

® A task performing the final recognition (this task integrates the geometrical fea-
tures of the object contour with the height information and tries to match these
data with those stored in a data base; it is denoted as rec).

. From the logic relations existing among the computations, it is easy to see that tasks
acq! and acq2 can be executed in parallel before any other activity. Tasks edgel and
edge? can also be executed in parallel, but each task cannot start before the associated
acquisition task completes. Task shape is based on the object contour extracted by
the low-level image processing, therefore it must wait the termination of both edgel
and edgeZ. The same is true for task disp, which however can be executed in parallel
with task shape. Then, task H can only start as disp completes and, finally, task rec

must wait the completion of H and shape. The resulting precedence graph is shown in
Figure 2.8.

2.2.3 RESOURCE CONSTRAINTS

From a process point of view, a resource is any software structure that can be used by
the process to advance its execution. Typically, a resource can be a data structure, a
set of variables, a main memory area, a file, a piece of program, or a set of registers of
a peripheral device. A resource dedicated to a particular process is said to be private,
whereas a resource that can be used by more tasks is called a shared resource.

Figure 2.8 Precedence graph associated with the robotic application illustrated in Fig-
ure 2.7.

 maintain data consistency, many shared Tesources do not allow simultaneous ac-

but require mutual exclusion among competing tasks. They are called mutually
{ve resources. Let It be a mutually exclusive resource shafed by tasks J, and J.

|8 the operation performed on R by J,, and B is thle operation performed on R Zi

then A and B must never be executed at the same tlme.. A piece of code execut

{or mutual exclusion constraints is called a critical section.

snsure sequential accesses to mutually exclusive resources, operating systems usu-
provide a synchronization mechanism (such as semaphores) that can be used by
to create critical sections. Hence, when we say that two or more tasks have re-
constraints, we mean that they share mutually exclusive resources, and hence
‘have to be synchronized.

lrier two tasks J; and J; that share a mutually exclusive resource R (for instance,
list), on which two operations (such as insert apd remove) are defined. The codei
.Inplementing such operations is thus a critical sectlpn that must be executed.u} mutua
gxelusion. If a binary semaphore s is used for this purpose, t.hen each f:rnt;c;al sec-

{lon must begin with a wait(s) primitive and must end with a signal(s) primitive (see

~ Vigure 2.9).

30 CHAPTER 2

Ty Ja
wait(s) shared —
resource
critical wait(s)
section R
critical
signal(s) section
signal(s)

[

Figure 2.9 Structure of two tasks that share a mutually exclusive resource.

critical section

wormed execution

A

Plockedon s

Figure 2.10 Example of blocking on a mutually exclusive resource.

If preemption is allowed and J; has a higher priority than J,, then J; can block in
the situation depicted in Figure 2.10. Here, task J, is activated first, and, after a
while, it enters its critical section and locks the semaphore. While J, is executing its
critical section, task J; arrives, and, since it has a higher priority, it preempts Jo and
starts executing. However, at time ¢;, when attempting to enter its critical section, it
is blocked on the semaphore and J is resumed. J; is blocked until time t2, when
J» releases the critical section by executing the signal(s) primitive, which uniocks the
semaphore.

A task waiting for a mutually exclusive resource is said to be dlocked on that resource.
All tasks blocked on the same resource are kept in a queue associated with the semaphore
that protects the resource. When a running task executes a wait primitive on a locked

scheduling

termination

preemption

waiton -
busy resource

signal

Figure 2.11 Waiting state caused by resource constraints.

semaphore, it enters a waiting state, until another task executes a signal primitive that
unlocks the semaphore. When a task leaves the waiting state, it does not go in the
funning state, but in the ready state, so that the CPU can be assigned to the highest-

- priority task by the scheduling algorithm. The state transition diagram relative to the

wituation described above is shown in Figure 2.11.

2.3 DEFINITION OF SCHEDULING PROBLEMS

In general, to define a scheduling problem we need to specify three sets: a set of n
tasks J = {J1,J2, ..., Jn}, asetof m processors P = {P1, Py, ..., P,.} and a set of
v types of resources R = {Ry, Re, ... , Rr}. Moreover, precedence relations among
tusks can be specified through a directed acyclic graph, and timing constraints can
be associated with each task. In this context, scheduling means assigning processors
from P and resources from R to tasks from J in order to complete all tasks under the
imposed constraints [B*93]. This problem, in its general form, has been shown to be
NP-complete [GI79] and hence computationally intractable.

Indeed, the complexity of scheduling algorithms is of high relevance in dynamic real-
time systems, where scheduling decisions must be taken on line during task execution.
A polynomial algorithm is one whose time complexity grows as a polynomial function
pof the input length n of an instance. The complexity of such algorithms is denoted by
O(p(n)). Each algorithm whose complexity function cannot be bounded in that way
i called an exponential time algorithm. In particular, NP is the class of all decision
problems that can be solved in polynomial time by a nordeterministic Turing machine.
A problem @ is said to be NP-complete if Q € NP and, for every Q' € NP,Q is
polynomially transformable to Q [GJ)79). A decision problem @ is said to be NP-hard
if all problems in NP are polynomially transformable to ¢, but we cannot show that Q
¢ NP.

.

/

32 CHAPTER 2

Let us consider two algorithms with complexity functions n and 57, respectively, and
let us assume that an elementary step for these al gorithms lasts 1 us. If the input length
of the instance is n = 30, then it is easy to calculate that the polynomial algorithm
can solve the problem in 30 ws, whereas the other needs about 3 - 105 centuries.
This example illustrates that the difference between polynomial and exponential time
algorithms is large and, hence, it may have a strong influence on the performance of
dynamic real-time systems. As a consequence, one of the research objectives on real-
time scheduling is to restrict our attention to simpler, but still practical, problems that
can be solved in polynomial time complexity.

In order to reduce the complexity of constructing a feasible schedule, one may sim-
plify the computer architecture (for example, by restricting to the case of uniprocessor
systems), or one may adopt a preemptive model, use fixed priorities, remove prece-
dence and/or resource constraints, assume simultaneous task activation, homogeneous
task sets (solely periodic or solely aperiodic activities), and so on. The assumptions
made on the system or on the tasks are typically used to classify the various scheduling
algorithms proposed in the literature.

2.3.1 CLASSIFICATION OF SCHEDULING
ALGORITHMS |

Among the great variety of algorithms proposed for scheduling real-time tasks, we can
identify the following main classes.

= Preemptive. With preemptive algorithms, the running task can be interrupted at
any time to assign the processor to another active task, according to a predefined
scheduling policy.

|}

Non-preemptive. With non-preemptive algorithms, a task, once started, is exe-
cuted by the processor until completion. In this case, all scheduling decisions are
taken as a task terminates its execution.

= Static. Static algorithms are those in which scheduling decisions are based on
fixed parameters, assigned to tasks before their activation,

= Dynamic. Dynamic algorithms are those in which scheduling decisions are based
on dynamic parameters that may change during system evolution,

= Off line. We say that a scheduling algorithm is used off line if it is executed on
the entire task set before actual task activation. The schedule generated in this
way is stored in a table and later executed by a dispatcher.

Basic Concepts 33

m Online. We say that a scheduling algorithm is used on line if scheduling decisic_ms
are taken at runtime every time a new task enters the system or when a running

task terminates.

m - Optimal. An algorithm is said to be optimal if it m_inir.nizes some given cost

function defined over the task set. When no cost functlc_m is fieﬁn‘ed and the c_.)nly

©exVeoncern is to achieve a feasible schedule, then an algor}thm is said to be optimal
if it always finds a feasible schedule whenever there exists one.

m Heuristic. An algorithm is said to be heuristic if it searches for a feasible sched-
ule using an objective function (heuristic function). Heuristic algorithms do not
guarantee to find the optimal schedule, even if there exists one.

Moreovér, an algorithm is said to be clairvoyant if it knows the future; th?t is, if it
knows in advance the arrival times of all the tasks. Although such an algonthm_ does
not exist in reality, it can be used for comparing the performance of real algorithms

ngainst the best possible one. :

GUARANTEE-BASED ALGORITHMS

In hard real—timé applications that require highly predic?able behavior, the fea.sibility
of the schedule should be guarantegd in advanc_e;.th.at is, bejfore task execu.txon_. I‘n
this way, if a critical task cannot be scheduled within its ‘deadlme, the_ system is still in
time to execute an alternative action, attempting to avoid catas:trophxc‘consequences.
In order to check for the feasibility of the schedule before tasks execgtlon, the system
has to plan its’actions by looking ahead in the future and by assuming a worst-case

seenario. :

I static real-time systems, where the task set is ﬁxt.:d and known a priori, all Fask
netivations can be precalculated off-line, and the entire schedule can be stored ina
table that contains all guaranteed tasks arranged in the proper order. Th;n, at runtu.nc,
i dispatcher simply removes the next task from the table and .puts it in the running
state. The main advantage of the static approach is_; that the ‘run-tlmc overhead fiogs not
tlepend on the complexity of the scheduling algorithm. Th1_s allows very sophisticated
algorithms to be used to solve complex problems or'ﬁnd .opt.1ma1 gchedulmg sequences.
(O the other hand, however, the resulting system is quite inflexible to environmental
vhanges; thus, predictability strongly relies on the observance of the hypotheses made
on the environment. :

34 CHAPTER 2

scheduling
activation termination
acceptance Wi
test
preemption
NO signal wait on
free resource busy resource

Figure 2.12 Scheme of the guarantee mechanism used in dynamic hard real-time systems.

Indynamic real-time systems, since new tasks can be activated atruntime, the guarantee
must be done on-line every time a new task enters the system. A scheme of the guarantee
mechanism typically adopted in dynamic real-time systems is illustrated in Figure 2.12.

If J is the current task set that has been previously guaranteed, a newly arrived task
Jnew is accepted into the system if and only if the task set J' = J U {Jnew} is found
to be schedulable. If J' is not schedulable, then task J,,.,, is rejected to preserve the
feasibility of the current task set.

Itis worth noticing that, since the guarantee mechanism is based on worst-case assump-
tions, a task could be unnecessarily rejected. This means that the guarantee of hard
tasks is achieved at the cost of reducing the average performance of the system. On
the other hand, the benefit of having a guarantee mechanism is that potential overload
situations can be detected in advance to avoid negative effects on the system. One of
the most dangerous phenomena caused by a transient overload is called the domino
effect. It refers to the situation in which the arrival of a new task causes all previously
guaranteed tasks to miss their deadlines. Let us consider for example the situation
depicted in Figure 2.13, where tasks are scheduled based on their absolute deadlines.

At time tp, if task J, ., is accepted, all other tasks (previously schedulable) will miss
their deadlines. In planned-based algorithms, this situation is detected at time to, when
the guarantee is performed and causes task .J. new 1O be rejected.

In summary, the guarantee test ensures that, once a task is accepted, it will complete
within its deadline and, moreover, its execution will not jeopardize the feasibility of
the tasks that have been previously guaranteed.

~ Basic Concepts 35

to

Figure 2.13 Example of domino effect.

BEST-EFFORT ALGORITHMS

In certain real-time applications, computational activities have: soft timing constraints
that should be met whenever possible to satisfy .systerr.l requlr_ements. However, no
vatastrophic events occur if one or more tasks miss their deadll_nes. The only conse-
quence associated with a timing fault is a performance degradation of the system.

For example, in typical multimedia applications, the objective qf th<_3 computing system
is to handle different types of information (such as text, graphics, 1r:nages, and ss)ux.xd)
in order to achieve a certain quality of service for t.he users. In this case, the tlml‘ng
gonstraints associated with the computational activities depend on the quality of service
tequested by the users; hence, missing a deadline may only affect the performance of

the system.

To efficiently support soft real-time applications that do I‘lOt have hard timing require-
ments, a best-effort approach may be adopted for schedulm_g. A best-effort schcdglmg
ulgorithm tries to *“do its best” to meet deadlines, but there is no guarantt.ae of ﬁndl_ng a
feasible schedule. In a best-effort approach, tasks may be q.ue?ged .accordmg to policies
that take time constraints into account; however, since feasibility is not c_hccked, a task
may be aborted during its execution. On the other haqd, best-effort a_] gorithms perform
much better than guarantee-based schemes in the averagc case. In fact, whfereas the
pessimistic assumptions made in the guarantee n_lechamsm may unnecessarily cause
task rejections, in best-effort algorithms a task is aborted only under real overload

vonditions.

CHAPTER 2

Average response time:

= 12
R=- > (fi—as)
i=1
Total completion time:
te = max(f;) — min(a;)
Weighted sum of completion times:

n
Lt =) wifs

=1

Maximum lateness:
Lz = m?-x(fz' - di)

Maximum number of late tasks:

Nite = Zmz’ss(fi)

i=1

where ‘
0 iff; <d;
1 otherwise

miss(f;) = {

 Table 2.1 Example of cost functions.

232 METRICS FOR PERFORMANCE EVALUATION

The performance of scheduling algorithms is typically evaluated through a cost function
defined over the task set. For example, classical scheduling algorithms try to minimize
the average response time, the total completion time, the weighted sum of completion
times, or the maximum lateness. When deadlines are considered, they are usually added
as constraints, imposing that all tasks must meet their deadlines. If some deadlines
cannot be met with an algorithm A, the schedule is said to be infeasible by A. Table
2.1 shows some common cost functions used for evaluating the performance of a
scheduling algorithm. ‘

pasic Concepls)

d1 d2 d3 dd ds
lL1=3 ¢L2=2 lL3=1 lL4=1 lLS:Z
@ _]1 LB I3 T4 Js

 m—
Ly = L1 =3
dl d2 d3 dd ds
‘luaza lL2=-4 lm:é lu:- lLS=4
) I3 I3 Iq Is I

]

Figure 2.14 The schedule in a minimizes the maximum lateness, but all tasks miss their
deadline. The schedule in b has a greater maximum lateness, but four tasks out of five
complete before their deadline.

The cost function selected for evaluating the performance of a scheduling algorithm
has strong implications on the performance of the real-time system [SSDNB95], andit
must be carefully chosen according to the specific application to be developed. For ex-
ample, the average résponse time is generally not of interest for real-time applications,
because there is not direct assessment of individual timing properties, such as periods
or deadlines. The same is true for minimizing the total completion time. The weighted
sum of completion times is relevant when tasks have different importance values that
they impart to the system on completion. Minimizing the maximum lateness can be
useful at design time when resources can be added until the maximum lateness achieved
on the task set is less than or equal to zero. In that case, no task misses its deadline.
In general, however, minimizing the maximum lateness does not minimize the number
of tasks that miss their deadlines and does not necessarily prevent one or more tasks
from missing their deadline.

Let us consider, for example, the case depicted in Figure 2.14. The schedule shown in
Figure 2.14a minimizes the maximum lateness, but all tasks miss their deadline. On
the other hand, the schedule shown in Figure 2.14b has a greater maximum lateness,
but four tasks out of five complete before their deadline.

38 _ CHAPTER 2

v(f;) v(f;)

Non real-time

(@)

vif;) vif;)

firm

: f _
dj ' d; T
(© @

Figure 2.15 Example of cost functions for different types of tasks.

When tasks have soft deadlines and the application concern is to meet as many deadlines
as possible (without a priori guarantee), then the scheduling algorithm should use a
cost function that minimizes the number of late tasks.

In other applications, the benefit of executing a task may depend not only on the
task importance but also on the time at which it is completed. This can be described
by means of specific utility functions, which describe the value associated with the
task as a function of its completion time. Figure 2.15 illustrates some typical utility
functions that can be defined on the application tasks. For instance, non-real-time
tasks (a) do not have deadlines, thus the value achieved by the system is proportional
to the task importance and does not depend on the completion time. Soft tasks (b)
have noncritical deadlines; therefore, the value gained by the system is constant if
the task finishes before its deadline but decreases with the exceeding time. In some
cases (c}, it is required to execute a task on time; that is, not too early and not too late
with respect to a given deadline. Hence, the value achieved by the system is high if
the task is completed around the deadline, but it rapidly decreases with the absolute
value of the lateness. In other cases (d), executing a task after its deadline does not
cause catastrophic consequences, but there is no benefit for the system, thus the utility
function is zero after the deadline. These types of tasks are denoted as firm.

When utility functions are defined on the tasks, the performance of a scheduling algo-
rithm can be measured by the cumulative value, given by the sum of the utility functions

Basic Concepts 39

computed at each completion time:

n

Cumulative value = Z v(fi).

i=1

This type of metrics is very useful for evaluating the performance of a system during
overload conditions, and it is considered in more detail in Chapter 8.

24 SCHEDULING ANOMALIES

~ In this section we describe some singular examples that clearly illustrate that real-time

computing is not equivalent to fast computing, and an increase of computational power
in the supporting hardware does not always cause an improvement on the performance
of a task set. These particular situations, called Richard’s anomalies, have been de-
scribed by Graham in 1976 and refer to task sets with precedence relations executed
in a multiprocessor environment. Designers should be aware of such insidious anoma-
lies, so that they can avoid them. The most important ancmalies are expressed by the
following theorem [Gra76, SSDNB95]:

Theorem 2.1 (Graham) [fa task set is optimally scheduled on a multiprocessor with
some priority assignment, a fixed number of processors, fixed execution times, and
precedence constraints, then increasing the number of processors, reducing execution
times, or weakening the precedence constraints can increase the schedule length.

T'his result implies that if tasks have deadlines, then adding resources (for example, an
extra processor) or relaxing constraints (less precedence among tasks or fewer execution
limes requirements) can make things worse. A few examples can better illustrate why
this theorem is true.

let us consider a task set composed by nine tasks J = {J1,Ja,..., Jy}, sorted by
decreasing priorities, so that J; priority is greater than J; priority if and only if ¢ < j.
Moreover, tasks are subject to precedence constraints that are described through the
graph shown in Figure 2.16. Computation times are indicated in parentheses.

If the above set is executed on a parallel machine with three processors, we obtain the
optimal schedule o* illustrated in Figure 2.17, where the global completion time is
{, == 12 units of time.

40 ’ CHAPTER 2

e (O ORI
§o Jg (4
2 (2 O

I7@®
I3 O

Je @
T4 Is@

priotity(T ;) > priority(d ;) V' i<j

Figure 2.16 Precedence graph of the task set J; numbers in parentheses indicate compu-
tation times. :

Py I Jo
Py | T2 Ja Is- Iq
Py | I3 - s Ig

Figure 2.17 Optimal schedule of task set .J on a three-processor machine.

]

Concepts a1

P I Jg
P2 Ja Js
Iy Ja J6
Py Ja Iq
r T T T T T
0 1 2 3 4 5 t

Figure 2.18 Schedule of task set J on a four-processor machine.

we will show that adding an extra processor, reducing tasks’ execution times, or
weakening precedence constraints will increase the global completion time of the task
et

' NUMBER OF PROCESSORS INCREASED

Il we execute the task set J on a more powerful machine consisting of four processors,
we obtain the schedule illustrated in Figure 2.18, which is characterized by a global
gompletion time of t. = 15 units of time. In these examples, it is implicitly assumed
that tasks are allocated to the first available processor.

COMPUTATION TIMES REDUCED

One could think that the global completion time of the task set J could be improved
by reducing tasks’ computation times of each task. However, we can surprisingly see
that if we reduce the computation time of each task by one unit of time, the schedule
length will increase with respect to the optimal schedule o*, and the global completion
time will be ¢, = 13, as shown in Figure 2.19.

PRECEDENCE CONSTRAINTS WEAKENED

Scheduling anomalies can also arise if we remove precedence constraints from the
directed acyclic graph depicted in Figure 2.16. For instance, if we remove the prece-
dence relations between task J and tasks Js and Ji (see Figure 2.20a), we obtain the
schedule shown in Figure 2.20b, which is characterized by a global completion time
of t, = 16 units of time. ‘

" CHAPTER 2

d Ty Is Ig
Pz [T2 34 Je Jg
P3 113 Iz

Figure 2.19 Schedule of task set J on three processors, with computation times reduced
by one unit of time.

@ i —() 1o
Ig 4
I, @ O O
O Tr @
Y
I3 O -
g0 'O Is5 @
(a)
Pl -Tl Jg
Pz JZ J4- JS
P3 I3 Iq

Figure 2.20 a. Precedence graph of task set J obtained by removing the constraints on

tasks Js and Jg. b. Schedule of task set J on three processors, with precedence constraints
weakened.

43

¥ & & U4 t

£
16 153 iy “

i3

% A2

by te

traints. If J and J4 share the same
i i Example of anomaly under resource cons] : ‘
Flgurrece2 iznlexclusivg mode, the optimal schedule length (a) increases if the computation
?xi?of task Jp is reduced (b). Task are statically allocated on the processors.

ANOMALIES UNDER RESOURCE CONSTRAINTS

. ; "
As a last example of scheduling anomalies, we will show how tht;,l schedule lenfgsﬂt: ;i :
i] ion ti in the presence o
i ducing tasks’ computation times 1n ‘
task set can increase when e ’ co! S rapegalene
i illustrated in Figure 2.21, where five

urces. Consider the case illus g
r??(())catcd on two processors: tasks J; and J> on processor Py, and tfasks Jl3, ._]4 anOdes
: ocessor Py. Moreover, tasks Jo and J4 share the same resou‘rcc inexc pswl::m n,
g::crc their execution cannot overlap in time. A schedule of this task set is shown i
Figure 2.21a, where the total completion time is t . = 17.

If we now reduce the computation time of task J1 on the first proccssor; thlfnJJg cj;
€, 1as 4 M
i i he resource before task J4. As a consequenc » task Jy mu
begin earlier and take t | b i L
d possibly miss its deadline.
block over the shared resource an iss i :

Fll(lm:*.trat«‘:d in Figure 2.21b. As we can see, the blocking time e).cpem.:nccd by J 4hcaustesl;
l :clny in the execution of J (which may also miss its deadline), increasing the tota
a

completion time of the task set from 17 to 22.

case behavior, but they

simple solution that avoids the anomaly is to keep the processor i
earlier, but this can be very inefficient. There are algorithms,
by Shen [SRS93], that tries to reclaim this idle time,
so that they will not occur.

CHAPTER 2

g anomaly illustrated by the previous example is particularly
i sed on their worst-

dle if tasks complete
such as the one proposed
while addressing the anomalies

Exercises

2.1 Give the formal definition of a schedule, explaining the difference between
preemptive and non-preemptive scheduling.

22 Explain the difference between periodic and aperiodic tasks, and describe the
main timing parameters that can be defined for a real-time activity,

2.3 Describe a real-time application as a number of tasks with precedence relations,
and draw the correspondin & precedence graph.

2.4 Discussthe difference between static and dynamic, on-line and off-line, optimal,
and heuristic scheduling algorithms.

2.5 Provide an example of domin

o effect, caused by the arrival of a task J* ina
feasible set of three tagks.)

APERIODIC TASK SCHEDULING

1 INTRODUCTION

this chapter we present a variety of algorithms for scheduling real-time e'lperiodic

§ on a single machine environment. Each algorithm represents a solptlon forh a

cular scheduling problem, which is expressed through a set of assump_m(')ns on td:
imali iteri d on the schedule. The restrictions ma

t and by an optimality criterion to be use lonth : :

o th.:lask sety are aimed at simplifying the algorithm in terms o]f tn‘ne comglem(tiy.c\:(fihs;p

7 icti i ication tasks, the complexity can be redu

. tions are applied on the application ; - :

e “i(')";:g heuristic approaches, which do not guarantee to ﬁ].ﬂd the optlma_l sol}xtxon

:ﬂ .P przblem but can still guarantee a feasible schedule in a wide range of situations.

though the algorithms described in this chapter are presented for schedulin g aperiodic
:lah o: uniprocessor systems, many of them can be extended to work on multiprocessor
br distributed architectures and deal with more complex task models.

o ficilitate the description of the scheduling problems prescnteld il?ﬁthis;.chasit:; n\::
i i is for a classification 3
tematic notation that could serve as a basis : . :
:“Jﬁd: f:);tsi)(;i proposed by Graham et al. [GLLK79], classifies all algorithms using
three fields o | B | -y, having the following meaning:

® The first field « describes the machine environment on whigh the task set has to
be scheduled (uniprocessor, multiprocessor, distributed architecture, and so on).

® The second field B describes task and resource éharacteristigs (preemptive, inde-
pendent versus precedence constrained, synchronous activations, and so on).

