
 

Abstract—  Throughout the last decades, many reconfigurable 

operating systems have been developed in order to let users and 

programmers make decisions upon the configuration of some of 

the innermost kernel’s aspects. These decisions, however, require 

an advanced level of skill in order to obtain some performance 

advantage. Furthermore, they can be detrimental to the system’s 

performance if they are not careful taken.  Letting the kernel itself 

do the decision-making upon the implementation of its aspects is a 

safe and powerful way to manage re-configurability that does not 

require interaction with the user nor the need of advanced skills to 

take advantage of. In this article, we propose the usage of Extended 

Adaptive Decision Tables as a mean for the kernel to achieve the 

capability of taking intelligent decisions based solely on the users’ 

process creation behavior.  
  

Keywords— Decision Tables, Operating Systems, Adaptive 

Device 

I.  INTRODUCTION 

he operating systems have been developed and used for 

decades to abstract the complexity of the underlying 

hardware for both end-users, and application programmers. 

Through them, the computer and its components can be seen 

as administrable resources that users and their applications can 

request and use. The list of resources that are administrated by 

the system kernel includes, but is not limited to: processor 

usage, memory distribution, permission for input/output 

operations on actual or virtual devices, among others. 

The first operating systems, such as MS-DOS, only allowed 

the execution of a single process at a time. For that reason, its 

kernel’s only functions were limited to booting, providing a 

command line, and some simple services. The executing 

process would take the complete control over the processor, 

the memory, and the I/O devices, and the system kernel had no 

administrative responsibilities whatsoever.  

With the development of the more advanced UNIX-based 

operating systems that allowed the execution of more than one 

process at a time, and the logging of multiple users 

concurrently, new challenges arose. The issue of which 

processes or users should have more processor usage time, or 

greater free memory chunks available, was addressed 

differently among the different kernel developers. Now, the 

diversity of resource administration policies among different 

operating systems provides users and companies a range of 

problem-specific products to serve their own business 

necessities.  
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Most of the now available public operating systems are non 

re-configurable. This means that their resource administration 

policies are built-in and cannot be changed by the users. 

We will use the nomenclature used in our previous work 

[1] in which the processor usage, the memory distribution or 

any other resource management are said to be aspects of the 

operating system. Each one of these aspects can be 

administrated using a policy or mode. An operating system is 

said to be reconfigurable when one or more of its aspects can 

change their mode during runtime without rebooting. 

 Although almost all of the commercial and home 

requirements for an operating system can be satisfied with a 

non-reconfigurable conventional kernel, there is a potential for 

the adaptable capabilities of a reconfigurable kernel. 

Some examples of reconfigurable operating systems, such 

as Kea [2] and Synthetix [3], have shown better results than 

their commercial counterparts on tests driven under diverse 

and changing execution conditions and process behaviors. 

Others, such as SPIN [4], provided an interface for 

extensibility where the programmer himself could develop 

new modes for the kernel’s aspects. 

All of the reconfigurable operating systems available – 

ready to use, source code, or just in academic bibliography – 

depend upon the user/programmer to decide both which 

changes make to the kernel configuration and when to make 

them. In the majority of the cases, this is achieved by 

providing an object-model based kernel-process interface [5] 

that presents the functionality for a certain service, and allows 

the programmer to define which object instance gets to 

execute them. 

In spite of the great flexibility and adaptive potential that 

can be obtained with the interface approach, its limitations can 

be often enough to prevent users, programmers, or even kernel 

designers, from using it.  

At first, it takes an application programmer to know at least 

something about the kernel’s intricacies in order to obtain any 

advantage. Some programmers may even have to investigate 

about them before knowing where and what to change. 

On the other hand, legacy, standard, or reused programs 

wouldn’t have the opportunity to harness its benefits. They 

might have to be re-engineered before being able to use the 

interfaces properly. End-users with programs of their own 

wouldn’t stand a chance on harvesting the potential of the 

underlying re-configurability.  

In this article, we present a different viewpoint for kernel 

reconfiguration. Since letting the users have the decision-

taking responsibility offers great potential for performance 

improvement, but lacks the portability and demands high 

skills, we thought that the kernel itself may be able to take 
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charge of the issue. The three main arguments supporting this 

idea are: 

First, the kernel developers already have all the skills and 

knowledge about its aspects and modes’ inner complexities. 

They can design better and faster mechanisms for mode 

exchanging so no skills or specific knowledge should be 

demanded to their users and programmers whatsoever. 

Second, all the applications to be run can be kernel-

agnostic and still harness the benefits of reconfiguration. 

Lastly, the kernel can take decisions upon several more 

indicators than a programmer could. Some of them may be 

inaccessible for a process at runtime, and some other may be 

too complex or too kernel-specific for a programmer to take 

into account. 

We will use Extended Adaptive Decision Tables – from 

now on, abbreviated as EADTs – as the device that will allow 

us, as designers, give the kernel the mechanism for decision 

making based on the behavior of its users. 

All the analysis and examples presented in this article were 

conducted on SODIUM
1
, a project for an academic 

reconfigurable operating system [6] [7] and, more specifically, 

its reconfigurable process scheduler aspect. 

The rest of this article is organized as follows: Section 2 

introduces the reconfigurable kernel design methodology used 

to analyze each aspect. Section 3 introduces the SODIUM’s 

reconfigurable process administration aspect in more detail. In 

section 4, that aspect will be analyzed in order to obtain the 

decision taking criteria necessary for the construction of the 

initial decision table that will be presented in Section 5. In 

section 6 explain what adaptive elements were used in order to 

obtain the adaptive decision table. In section 7, we analyze the 

extended mechanism that allows for multi-criteria decision 

taking in order to generate the final extended adaptive decision 

table. Finally, section 8 discusses the future work and tests to 

be conducted, and the conclusions of this investigation. 

II.  RECONFIGURABLE DESIGN METHODOLOGY 

The SODIUM project was started back in 2005 with the aim to 

give the operating system class’ alumni the opportunity, not 

only to grasp the theory concepts, but also to let them 

involucrate actively in the development of a kernel. At the end 

of each year, all the practices were tested, and the best ones 

were integrated into the kernel for the next year’s alumni to 

use.   

One of the first dilemmas of this methodology emerged 

when, predictably, many different modes were programmed 

for the same particular aspect. For example, having a basic 

fixed partition memory administrator as a base, a practice 

asked to develop another one based on paging, forced the 

student to replace the existing one. This forcibly implicated a 

loss in didactic value since, even though the paging approach 

was, in overall, better, the former mode was still useful for 

teaching purposes. 

Given this situation, the professorship agreed on 

implementing a mechanism by which SODIUM could handle 
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multiple modes for any aspect, and that those modes could be 

exchanged while still on runtime. The efforts on developing a 

design pattern for this mechanism ended up in the 

methodology proposed in [1].  

In that methodology, four steps had to be conducted upon 

each aspect to be designed for re-configurability:  

 

1. The current situation must be analyzed for each 

possible transition between modes – if any –, the 

kernel mechanism that should be developed, and the 

timing level. 

2. All the currently available modes should be 

enumerated along with a graph showing new ones, in 

order to uncover possible missing transitions. 

3. Design the reconfigurable aspect indicating 

implementation details, timing levels, and element to 

be verified for possible data loss for each transition. 

4. Design, document, and publish the kernel/user 

interfaces for the reconfiguration mechanism. 

 

Although this methodology is useful to design 

reconfigurable schemes for existing aspects and modes, it does 

not contemplate the decision-taking process. In fact, it ends at 

step 4, where it indicates that a kernel/user interface should be 

designed. In our proposal, we seek to vary this methodology to 

let the kernel reconfigure itself. In order to do so, we shall 

replace the former step with a new one: 

 

4. Establish the criteria and events determining the need 

for mode changes, and the mechanisms to allow 

them.   

 

The timing levels are also important because they indicate 

which conditions within the system determine whether a 

transition can be executed or not. Four timing levels are 

defined. Level 1, when the transition can be only be executed 

by recompiling the kernel; level 2, when the transition can 

only be executed by rebooting the system; level 3, when the 

transition can be executed in runtime, but globally for all 

processes; and level 4, when the transition can be executed in 

runtime, and in particular for each process.  

In the next section, we will use the presented methodology 

in order to analyze one of the main reconfigurable aspects of 

SODIUM’s kernel. 

III.  SODIUM’S RECONFIGURABLE PROCESS SCHEDULER 

Even though this article presents a general proposal for kernel 

decision-taking on re-configurability using EADTs, it is 

necessary and much easier to explain its implementation steps 

by using an existing reconfigurable aspect as base. 

 No other reconfigurable aspect has been more refined and 

researched upon in SODIUM than the process scheduler. It 

counts with 6 different modes available: Round-Robin (RR), 

Round-Robin with Priority Queues (RRPR), Round-Robin 

with Variable Quantum (RRQV), First-Come-First-Serve 

(FCFS), Shortest-Finishing-Job-First (SJFS), and Best-Time-

Of-Service (BTS). Many of these modes specification are 



 

standards and can be found in specialized operating system’s 

books. We used a general specification found in [8] as a base 

for almost all of them.  

This aspect has the particularity that all of its 6 modes can 

transition to all of the others without any limitation. This 

means that it counts with 30 different transitions to evaluate. 

Also, the timing level for all transitions is 3. This is because 

any changes in the process scheduler will forcibly affect all the 

process at the same time. No changes can be made 

individually for any process. 

Since straightforwardly programming 30 different 

functions –one for each transition– could result in a bloated 

and difficult to understand kernel code, we decided to analyze, 

at depth, which actions were to be shared between the 

different transitions’ procedures. We identified 8 common 

actions that could be normalized and reutilized between all the 

procedures. Briefly, these actions are: setbasealg(alg), to set 

the basic scheduling algorithm; initPriorities(), to  initialize 

priorities for RRPR; initQTime() to initialize quantum times 

for RRQV; setNonPreemptive() and setPreemptive() to set a 

preemptive or non-preemptive scheduler behavior, 

respectively; queueMode(mode) to set a unique or level based 

ready process queue; and quantumMode(mode), to set a 

unique or priority based quantum evaluation. In Table 3.1, 

different groups of actions are set and identified with an 

alphabet letter codification. 

   

 These groups of actions represent functions that allow the 

execution of all the analyzed transitions. The map of actions 

per transition can be seen in Table 3.2. The ‘0’ action means 

that no procedure should be executed. 

In Table 3.2, the SODIUM kernel can query which actions 

to execute – all of them are commutative – in order to change 

the scheduling mode to another while still on runtime. This is 

a key step for an autonomously reconfigurable kernel, and 

must be designed by the systems developers. This table will be 

used later again in Section 7, when new rules of transition will 

have to be created to contemplate new executing conditions. 

One of the visible limitations of this approach is that it is 

not extensible. All the transactions and groups of actions must 

be determined before the programming of the kernel. Any 

mechanism that would allow a programmer to enable new 

modes would be so complex that it would go against its main 

benefits.  

 

  

 
 

 Although this transition-actions relation allow the kernel to 

execute transitions by itself, it is still not enough to let it take 

decisions. Having this relation between transitions and actions 

to be performed is the first step in order to generate a 

conventional decision table –from now on, abbreviated as 

cTD–.  The cTD will hold the first trivial condition-action 

mechanism that will indicate the kernel when and what 

transitions execute. 

 

 

 

IV.  DECISION-TAKING CRITERIA 

In order to let a transition-mode-actions table, as the one 

obtained before, allow the kernel to have decision-taking 

capabilities, we need to define two new key elements: 

conditions, which will indicate which rules –as a 

generalization of what a transition is, in the context of this 

article– must execute in a given moment; and events, that 

indicate when the conditions must be evaluated.   

Events by themselves can be also considered as conditions, 

for if they do not trigger, no rules associated to them will be 

executed. However, from an operating system’s view, the 

distinction is important. Events are codified as trigger 

functions set in different parts of the kernel while conditions 

are a part of the cTD to be developed. In the case of our 

Actions 

setbasealg(BTS)     x     x     x     x        

setbasealg(RR)                       x x x x x 

initPriorities() x x               x x      x x   

initQTime()  x     x           x       x   

initReorder(CTIME)   x     x     x         x    x  

initReorder(PTIME)    x     x     x     x        x 

setNonPreemptive()   x x     x x   x x            x x 

setPreemptive()                x x x  x x       

queueMode(UN)      x x x x x                  

queueMode(PR) x           x     x       x    

quantumMode(UN)           x x x x x             

quantumMode(PR)  x     x           x       x   

Codification  a b c d e f g h i j k l m n ñ o p q r s t u v w x y z 
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RR 0 a b c d e 

PR f 0 g h i j 

QV k l 0 m n ñ 

FC o p q 0 r s 

SJ t p q u 0 s 

BT v w x y z 0 

Table 3.2 – Mode transitions and their set of actions  

Table 3.1 – Set of actions and their codification for mode transitions on SODUIUM’s process scheduler 



 

process scheduler, event triggers will be set every time a 

process is created, killed, interrupted, or released. This 

includes hardware/software interruptions, syscalls, I/O 

requests and responses, and process intercommunication 

routines. 

Defining conditions as such will be a little more difficult. In 

order to define in which executing scenarios we will have to 

evaluate three different edges of the process scheduling: 

scheduling metrics, application categories, and algorithm-

metrics relations. 

 

A.  Scheduling metrics 

 

SODIUM’s process scheduler counts with a set of 7 metrics 

to evaluate and report the performance of each scheduling 

algorithm. Most of them are based on the metrics list present 

in [8]. Here is a brief enumeration and explanation for each 

one: 

 

- Processor Usage ( cpu% ) indicates the ratio between the 

time the processor spends actually executing processes 

and the time that it spends idle or in overhead costly 

procedures.  

-  Throughput ( f# ) indicates the amount of processes 

finished given a finite differential of time. SODIUM 

updates this metric every 10 minutes. 

- Turnaround Time ( cvt ) indicates the time that took a 

process to completely executes, from when it is created 

until it is terminated. It includes the time spent waiting 

for enough free memory, to be executed, and I/O 

operations. 

- Waiting Time  ( wt ) indicates the total waiting time of a 

process during all its execution from the moment it is 

created. I/O operations or syscalls are not included in 

this metric since they represent actual requested 

operations from the process. 

- Response Time ( rt ) indicates the average time, for each 

process, after which, the first response, such as writing 

a character on the screen, is produced after a user 

request. 

- Effective Time of Service ( st ) indicates the sum of time 

that the process has spent in actual usage of the 

processor. 

- Overhead (Ov) indicates the time that the processor 

spends executing system maintenance or managing 

routines. 

 

B.  Application Categories 

 

Since it is not possible to know completely what actions 

and services will an application request before it is completely 

executed, the only way to estimate its future behavior is to 

profile it into well-known categories. We focused that 

profiling using a technique presented in [9] based on 

frequencies of system calls, and maintaining a per-process 

profiling information structure such as the ones specified for 

the Solaris operating system in [10]. 

Executing processes fall, after a short period of profiling, 

into one of the following application categories defined by us: 

Interaction Intensive Applications (II), such as games or 

command-line consoles; Multimedia Applications (M), such 

as video and audio editing tools; I/O Intensive Applications 

(ES), such as DVD burners or data transfer programs; Internet 

Applications (WEB), such as web browsers or network 

programs; Processing Intensive Applications (P), such as 

compilers or scientific programs; and System Applications 

(S), such as services or maintenance programs. 

After conducting several tests on sample programs that 

were successfully profiled, we could establish which metrics 

are more important for each application category. In the Table 

4.1 we show the most important metrics for each category that 

resulted from the tests. 

 

 
 

For simplicity reasons, all the other metrics that are not 

considered as high priority will be considered as indifferent 

for that given category. 

 

C.  Algorithm-Metrics Relations 

 

Since we now count with the possibility of profiling a 

process into a category, keep scheduling metrics up to date, 

and know which metrics favor each category, we only need to 

determine which scheduling algorithms (modes) improve 

those metrics. 

We found some of these algorithm-metric relations already 

documented [8] in the bibliography. However, we conducted 

additional tests to confirm them, and also figure out those that 

were lacking. From these tests, we obtained the results shown 

in the Table 4.2. In this table, the beneficial relations in which 

the algorithm improves the measures from each metric are 

Categories Metrics 

Interaction Intensive 

Applications 

(II) 

Response Time 

Waiting Time 

Multimedia Applications 

(M) 

Waiting Time 

Processor Usage 

I/O Intensive Applications 

(ES) 

Throughput 

Response Time 

Internet Applications 

(WEB) 

Effective Time of Service  

Response Time 

Processing Intensive 

Applications 

(P) 

Turnaround Time 

Throughput 

System Applications 

(S) 
Overhead 

   Table 4.1 – High priority metrics for each category  



 

marked with a (+); the neutral relations in which the algorithm 

doesn’t affect the metric are marked with a (0); the negative 

relations are marked with a (-), and the (x) marks indicate that 

the algorithm is extremely negative to the metric.  

  

 

 

 Metric 

Algorithm %cpu #f tcv tw tr ts ov 

RR + 0 - 0 0 0 0 

RRPR + 0 0 + 0 x 0 

RRQV 0 0 0 0 + x 0 

FCFS - 0 + x x x + 

SJFS -  + + x x x - 

BTS -  0 - - 0 + - 

 
 

We can now combine Tables 4.1 and 4.2 in order to obtain 

an algorithm-category rating in which the score will indicate 

how much each algorithm benefits/handicaps each application 

category. The amount of (+) marks per each high priority 

metric that the algorithm beneficiates will score 1 positive 

point for that category; (-) will rest 1 point; (0) will produce 

no effect; and (x) marks will completely disqualify the 

algorithm. The results from the combination are presented in 

the Table 4.3. 

 

 Algorithm 

Category RR RRPR RRQV FCFS SJFS BTS 

 (II) 0 1 1 X X 0 

 (M) 1 2 0 X X 0 

 (ES) 0 0 1 X X 0 

 (WEB) 0 X X X X 1 

 (P) -1 0 0 1 2 -1 

 (S) 0 0 0 1 -1 -1 

 

V.  CONVENTIONAL DECISION TABLE 

The rating information obtained in the Table 4.3 is enough to 

decide which scheduling algorithm to use when the processes 

in execution pertain to the same application category. 

However, this scenario doesn’t cover all the execution 

possibilities. 

  It could happen that only one process is in the ready queue. 

This case may be important for batch processing systems. 

Using a overhead costly algorithm in these cases is not 

convenient. Therefore, we can establish that in case of mono-

processing (mono), the algorithm used will be FCFS. 

 Also, a more common scenario is that when different 

processes of different categories try to execute concurrently. 

In this case, using the rating from Table 4.3 can be misleading, 

because we are using simple heuristic and empiric information 

on complex cases. In fact, there are 720 different 

combinational scenarios of mixed categories. This complexity 

cannot be addressed a priori, by analyzing each case in 

particular. This case of multi-category (multi) will be resolved 

using an adaptive decision table –from now on, abbreviated as 

ADT– to be developed in the next section. 

By now, we can contemplate the general case of multiple 

categories with the most generally acceptable of the 

scheduling algorithms: RR. 

The mono, multi, and the pure categories processes can be 

interpreted as the conditions that, without combining with 

each other, determine the whole universe of possible execution 

scenarios. Also, we know which algorithm to use for each 

condition, we can establish the transitions –and their actions– 

to execute in each case by combining Tables 4.3 and 3.2. 

We now have all the elements to elaborate the first cDT for 

the SODIUM kernel to decide which algorithm use at each 

moment.  It will consist in a set of 30 rules combining 

conditions –current mode and current scenario– and their 

transition actions. The cDT for the SODIUM process 

scheduler is shown as the Table 5.1. 

 

VI.  ADAPTIVE DECISION TABLE 

A.  Normalized Base cDT 

 

The condition evaluation in the cDT of the Table 5.1 obeys to 

that of an inclusive OR. This means that, it takes only one 
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Current 

Scenario 

Mono   x     x     x           x     x  

II  x     x           x     x     x   

 M x           x     x     x     x    

ES  x     x           x     x     x   

 WEB     x     x     x     x     x      

P    x     x     x     x           x 

S   x     x     x           x     x  

Multi      x     x     x     x     x     

Actions func() a b c d e f g h i j k l m n ñ o p q r s t p q u s v w x y z 

Table 4.3 – Rating relation table between algorithms and 

application categories. 

   Table 4.2 – Relations between metrics and algorithms  

Table 5.1 – Conventional Decision Table for SODIUM Process Scheduler 



 

condition to be true in order to execute a given rule. For 

example, rule 2 will execute if a Mono scenario is detected and 

also if it detects an ES scenario. However, the formal 

definition of the cDT, that we must use as a base for 

developing the more complex ADTs in order to contemplate 

all the possible scenarios from the generalized Multi, requires  

the conditions to be evaluated with an AND logic. For this, it 

will be necessary to add duplicated rules that contemplate one 

of the conditions that will be eliminated from the original one. 

Also, we need to eliminate mono scenario corresponding rules 

because they can be directly programmed into the scheduler; 

and those corresponding the multi scenario, because the ADT 

will allow us to contemplate all the particular rules of 

combining categories scenarios. 

 Another modification to the original cDT is the addition of 

the not mark (-) indicating that that condition must be false in 

order to execute that rule. The resulting fixed cDT is shown in 

the Table 6.1 (some of the rules have been bypassed in the 

representation for format purposes). 
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II - x - - x - - - … - - - - - - - 

 M x - - - - - - x … - - - - - - - 

ES - - - - - - - - … - - x x - x - 

 WEB - - - x - - x - … - - - - - - - 

P - - x - - x - - … - - - - - - - 

S - - - - - - - - … x x - - x - x 

func() a b d e g i j l … h m q q u x y 

 
 

B.  Adaptive mechanism 

 

In order to contemplate new rules for complex scenario 

conditions, such as II and M category processes running 

simultaneously, we will have to add adaptive mechanisms to 

our static cDT in order to turn it into a ADT. ADTs formal 

definition [11] [12] requires the specification of a normalized 

base cDT such as the one in Table 6.1, and also the addition of 

adaptive functions to perform rule query, elimination, and 

insertion actions upon it. 

 In this investigation, we used a simple adaptive mechanism 

that consists in the usage of two different adaptive functions. 

One  is used to verify the existence of rules contemplating the 

current execution scenario. The other is used to add a new rule 

in case that no such rules were detected. 

 These adaptive functions called Ad1 and Ad2, execute after 

and before their calling rules, respectively. Ad1 only sets the 

value of the state variable to D (determined) when an existing 

rule can manage the current state of conditions. When no rule 

can handle the current conditions, a new rule (31) is in charge 

to set the state variable to ND (non-determined). This variable 

is set back by the execution of Ad1, in case that a rule was 

found. On the next step, if the state is equal to ND, another 

new rule (32) executes the Ad2 adaptive function. 

 The Ad2 adaptive function is in charge to add 6 new rules. 

These new rules will transition to the current mode from any 

other mode given the current conditions. The result for this is 

that, whenever in the future, when the same conditions repeat, 

they will transition to the mode in which those conditions 

were found initially. The rationale behind this is that, when a 

new set of conditions is found, is probably because only one 

new different category process was created, where there is a 

whole group of processes of an existing category already 

running. By doing this, we try to maintain the benefits of the 

current mode for the existing processes. 

 

 

 

  The implementation of this mechanism onto the 

subjacent cDT in order to generate the first SODIUM process 

scheduler ADT is shown as the Table 6.2. 

  Adaptive Functions Declarations Rules 
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State             …       N  

II    C1 C1 C1 C1 C1 C1 - x - … - - - - -    

 M    C2 C2 C2 C2 C2 C2 x - - … - - - - -    

ES    C3 C3 C3 C3 C3 C3 - - - … x x - x -    

 WEB    C4 C4 C4 C4 C4 C4 - - - … - - - - -    

P    C5 C5 C5 C5 C5 C5 - - x … - - - - -    

S    C6 C6 C6 C6 C6 C6 - - - … - - x - x    

Actions 
func()    $m $m $m $m $m $m 0 a b d … q q u x y    
State=  D            …      N   

Adaptive  

Functions 

Ad1 A   x x x x x x  x x x x x x x x x  x  

Ad2   B                  x  

Table 6.1 – Normalized cDT 

Table 6.2 – Adaptive Decision Table for SODIUM Process Scheduler 



 

 The action to be performed by every new rule is set by the 

$m function that takes the rule’s own starting mode and the 

current mode –as destination mode– as parameters to obtain 

the specific set of actions for that transition. The result of 

executing $m are exactly those found in the Table 3.2.  

 An example of its adaptive functions can be illustrated as 

when a new scenario is detected in which the (M) and the (S) 

conditions are detected simultaneously. Six new rules are 

created to handle those conditions in combination with the six 

possible current modes, and are added to the subjacent cDT. 

The Table 6.3 shows the effect of their execution, highlighting 

the new rules in shaded green.   

  

However basic, this mechanism actually learns from the 

users’ behavior, and will converge into a complete 720 rules 

cDT differently for each user, or each run. On the other hand, 

it shows some limitations on the fact that, once created, the 

new rules can’t be modified, even if the reaching scenario 

should indicate a new transition for that rule. Also, it doesn’t 

provide the ability to contemplate multiple criteria for the 

decision making process.  These problems are addressed by 

using the extensions shown in the following section. 

 

VII.  EXTENDED ADAPTIVE DECISION TABLE 

 

The ADT obtained in the previous section allows the creation 

of new rules that contemplate conditions that were not 

included in the original cDT. However, the only criterion used 

for determining the transition actions was that of maintaining 

the original current mode. This criterion, doesn’t contemplate 

the usage of direct indicators of performance such as the 

metrics, nor a mechanism to alter the already created rules. 

Therefore, it is necessary to extend the definition of our ADT 

in order to include specific functions that could decide which 

mode to utilize based in the relation between the processes 

categories and the maintained metrics. 

 We will recur to the formal definition of the EADT from 

[13] and [14] in which multiple criteria can be defined in order 

to determine an alternative. 

The original formulation consists on a base ADT such as the 

one obtained in the Table 6.2 and the addition of auxiliary 

functions (FM) that execute prior any other action and define 

values for variables that those actions will use. 

 In our case, we want to define the destination mode 

parameter for the function $m using a multi-criteria method. 

The required steps for defining the method consist in three 

modules: 

  

 

 Module I consists in the identification of the different 

criteria –metrics, in our case– and alternatives –modes– for the 

decision problem. Their quantitative relation will define, in 

each case what alternative will be better for each scenario 

taking the metrics as reference.  In our case we define the a C 

set of conditions, and an A set of alternatives as the following: 

 

  

  Criterion Preference 

Category %cpu #f tcv tw tr ts ov 

 (II) 1 1 1 3 3 1 1 

 (M) 3 1 1 3 1 1 1 

 (ES) 1 3 1 1 3 1 1 

 (WEB) 1 1 1 1 3 3 1 

 (P) 1 3 3 1 1 1 1 

 (S) 1 1 1 1 1 1 3 
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State             …       N        

II    C1 C1 C1 C1 C1 C1 - x - … - - - - -    - - - - - - 

 M    C2 C2 C2 C2 C2 C2 x - - … - - - - -    x x x x x x 

ES    C3 C3 C3 C3 C3 C3 - - - … x x - x -    - - - - - - 

 WEB    C4 C4 C4 C4 C4 C4 - - - … - - - - -    - - - - - - 

P    C5 C5 C5 C5 C5 C5 - - x … - - - - -    - - - - - - 

S    C6 C6 C6 C6 C6 C6 - - - … - - x - x    x x x x x x 

func()    $m $m $m $m $m $m 0 a b d … q q u x y    c h m 0 u y 

State=  D            …      N         

Ad1 A   x x x x x x  x x x x x x x x x  x  x x x x x x 

Ad2   B                  x        

Table 7.1 – Criterion preference by category 

Table 6.3 – Example of an ADT creating new rules for a formerly non-contemplated (M) and (S) Scenario 



 

  Module II consists in obtaining a Z matrix of performance 

for each combination of criteria and alternatives. Using the 

Saaty fundamental scale for comparing the relative importance 

of each criterion with each category we could elaborate the 

Table 7.1. 

On the other hand, we define the importance of each 

criterion pair will vary regarding the amount of processes of 

each category that is ready to execute multiplied by the 

criterion preference shown in the Table 7.1. For example, for 

an scenario where 2 (II) category processes, and 1 (S) category 

process are ready, the importance of the tw and tr metrics will 

be equal to 6, and that of the ov will be 3.  

With those values in mind, a criteria pair preference can be 

elaborated for the example as the one shown in the Table 7.2. 

 

 Criterion Preference 

Criteria %cpu #f tcv tw tr ts ov 

%cpu 1 1 1 6 6 1 3 

#f 1 1 1 6 6 1 3 

tcv 1 1 1 6 6 1 3 

tw 1/6 1/6 1/6 1 1 1/6 3 

tr 1/6 1/6 1/6 1 1 1/6 3 

ts 1 1 1 6 6 1 3 

ov 1/3 1/3 1/3 1/3 1/3 1/3 1 

 
 

 

The values of the Table 7.2, obtained for this particular 

example, will vary depending on the current conditions 

scenario and the amount of processes per category. 

Nevertheless, continuing with the example, a normalized final 

Z matrix of performance can be obtained as the one shown in 

the Table 7.3. 

 

 Criterion Preference 

Total 

Preference 

Category %cpu #f tcv tw tr ts ov 

Multiplier x 1 x 1  x 1  x 6 x 6 x 1 x 3 

RR 0,35 0,13 0,05 0,18 0,16 0,23 0,15 0,17 

RRPR 0,35 0,13 0,15 0,54 0,16 0,03 0,15 0,28 

RRQV 0,12 0,13 0,30 0,02 0,02 0,03 0,45 0,25 

FCFS 0,06 0,13 0,30 0,02 0,02 0,03 0,45 0,11 

SJFS 0,06 0,38 0,30 0,02 0,02 0,03 0,05 0,06 

BTS 0,06 0,13 0,05 0,06 0,16 0,68 0,05 0,13 

 
It can be seen on Table 7.3 that, for the example with two 

(II) processes, and one (S) process, results in a better 

preference for the RRPR mode, just above that of the RRQV 

mode. The Z matrix will be regenerated completely based in 

the amount of ready processes per category each time that an 

adaptive function calls to a z_gen() named function. Another 

z_get() named function will be used to obtain the most 

preferred scheduling mode from the current newest Z matrix.  

Module III consists in the development of the functions for 

the insertion of new rules for the non-contemplated scenarios 

in the moment that they are detected. This was already 

achieved in the TDA presented in the Table 6.2. 

 It will only take to add calls to the z_gen() and z_get() 

functions along with a new variable m to hold their obtained 

value. In the Table 7.4 the final form of the EADT for the 

SODIUM process scheduler is shown. 

 

 

Until now only brief tests and simulations for testing the 

EADT performance regarding different simple scenarios has 

been conducted due to the initial complexity of the 

implementation. Their results were satisfactory although yet 

not sufficient to determine its full potential. We estimate that 

in the next few months, new developments will support the 

usage of this powerful tool. 
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Estado             …       N  

II    C1 C1 C1 C1 C1 C1 - x - … - - - - -    

 M    C2 C2 C2 C2 C2 C2 x - - … - - - - -    

ES    C3 C3 C3 C3 C3 C3 - - - … x x - x -    

 WEB    C4 C4 C4 C4 C4 C4 - - - … - - - - -    

P    C5 C5 C5 C5 C5 C5 - - x … - - - - -    

S    C6 C6 C6 C6 C6 C6 - - - … - - x - x    

Extended Adaptive 

Actions 

z_gen()                     x  

z_get()                     m  

Actions 
func()    $m $m $m $m $m $m 0 a b d … q q u x y    

Estado=  D            …      N   

Adaptive Functions Ad1 A   x x x x x x  x x x x x x x x x  x  

Ad2   B                  x  

Variables m   V                  x  

Table 7.3 – Matrix Z of alternatives preference 

Table 7.2 – Relative preferences between criterion pairs 

Table 7.4 – Final form of the EADT for the SODIUM process scheduler 



 

VIII.  CONCLUSIONS AND FURTHER WORK 

With the usage of EADTs we were able to figure out 

alternatives for execution conditions of an aspect of an 

operating system that were too complex or inaccessible to 

figure out a priori. It also provided the kernel with the 

capability of changing the existing rules based on the new 

process usage behavior of each user. While these features may 

be possible to attain otherwise, none of the other existing 

adaptive devices provide such an intuitive mechanism for 

specifying rules and adaptive functions. 

 Although we are still lacking actual results from tests 

conducted on a variety of complex scenarios, the preliminary 

results on simple executions show that the decision tables 

converged into ideal solutions in each case, and that the kernel 

was actually learning from the process scheduler events. This 

actually serves as a demonstration that, so far, it is possible to 

create an automatic adaptive reconfiguration mechanism for a 

kernel without the supervision or explicit interactions with the 

users and their application.  

There is still much potential to be harnessed from the 

EADTs. For example, we are not yet using the measures from 

the different metrics to evaluate each algorithm benefits from 

the actual execution. Doing this would converge and replace 

the initial heuristics on the algorithm-metrics relation tables.  

Regarding SODIUM, there are other aspects of its design 

that are yet to be analyzed and converted into adaptively 

reconfigurable. That work should be done in the following 

months, during which we would still testing the results of the 

adaptive process scheduler. 

Perspectives on the usage of adaptive mechanisms for 

automatic non-interactive reconfiguration are promising. 

These could be applied on any other home or enterprise 

operating systems in the market without the need of re-

engineering their existing applications. An initial cost should 

be paid, nonetheless; mechanisms for automatic 

reconfiguration must be developed and provided as inputs for 

the EADTs, conditions must be analyzed, and events must be 

set. 
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