

Abstract—  Throughout the last decades, many reconfigurable

operating systems have been developed in order to let users and

programmers make decisions upon the configuration of some of

the innermost kernel’s aspects. These decisions, however, require

an advanced level of skill in order to obtain some performance

advantage. Furthermore, they can be detrimental to the system’s

performance if they are not careful taken. Letting the kernel itself

do the decision-making upon the implementation of its aspects is a

safe and powerful way to manage re-configurability that does not

require interaction with the user nor the need of advanced skills to

take advantage of. In this article, we propose the usage of Extended

Adaptive Decision Tables as a mean for the kernel to achieve the

capability of taking intelligent decisions based solely on the users’

process creation behavior.

Keywords— Decision Tables, Operating Systems, Adaptive

Device

I. INTRODUCTION

he operating systems have been developed and used for

decades to abstract the complexity of the underlying

hardware for both end-users, and application programmers.

Through them, the computer and its components can be seen

as administrable resources that users and their applications can

request and use. The list of resources that are administrated by

the system kernel includes, but is not limited to: processor

usage, memory distribution, permission for input/output

operations on actual or virtual devices, among others.

The first operating systems, such as MS-DOS, only allowed

the execution of a single process at a time. For that reason, its

kernel’s only functions were limited to booting, providing a

command line, and some simple services. The executing

process would take the complete control over the processor,

the memory, and the I/O devices, and the system kernel had no

administrative responsibilities whatsoever.

With the development of the more advanced UNIX-based

operating systems that allowed the execution of more than one

process at a time, and the logging of multiple users

concurrently, new challenges arose. The issue of which

processes or users should have more processor usage time, or

greater free memory chunks available, was addressed

differently among the different kernel developers. Now, the

diversity of resource administration policies among different

operating systems provides users and companies a range of

problem-specific products to serve their own business

necessities.

S. M. Martin, G. E. De Luca, N. B. Casas, Departamento de Ingeniería e

Investigaciones Tecnológicas, Universidad Nacional de La Matanza Buenos

Aires, Argentina. {smartin, gdeluca, ncasas}@unlam.edu.ar

Most of the now available public operating systems are non

re-configurable. This means that their resource administration

policies are built-in and cannot be changed by the users.

We will use the nomenclature used in our previous work

[1] in which the processor usage, the memory distribution or

any other resource management are said to be aspects of the

operating system. Each one of these aspects can be

administrated using a policy or mode. An operating system is

said to be reconfigurable when one or more of its aspects can

change their mode during runtime without rebooting.

 Although almost all of the commercial and home

requirements for an operating system can be satisfied with a

non-reconfigurable conventional kernel, there is a potential for

the adaptable capabilities of a reconfigurable kernel.

Some examples of reconfigurable operating systems, such

as Kea [2] and Synthetix [3], have shown better results than

their commercial counterparts on tests driven under diverse

and changing execution conditions and process behaviors.

Others, such as SPIN [4], provided an interface for

extensibility where the programmer himself could develop

new modes for the kernel’s aspects.

All of the reconfigurable operating systems available –

ready to use, source code, or just in academic bibliography –

depend upon the user/programmer to decide both which

changes make to the kernel configuration and when to make

them. In the majority of the cases, this is achieved by

providing an object-model based kernel-process interface [5]

that presents the functionality for a certain service, and allows

the programmer to define which object instance gets to

execute them.

In spite of the great flexibility and adaptive potential that

can be obtained with the interface approach, its limitations can

be often enough to prevent users, programmers, or even kernel

designers, from using it.

At first, it takes an application programmer to know at least

something about the kernel’s intricacies in order to obtain any

advantage. Some programmers may even have to investigate

about them before knowing where and what to change.

On the other hand, legacy, standard, or reused programs

wouldn’t have the opportunity to harness its benefits. They

might have to be re-engineered before being able to use the

interfaces properly. End-users with programs of their own

wouldn’t stand a chance on harvesting the potential of the

underlying re-configurability.

In this article, we present a different viewpoint for kernel

reconfiguration. Since letting the users have the decision-

taking responsibility offers great potential for performance

improvement, but lacks the portability and demands high

skills, we thought that the kernel itself may be able to take

S. M. Martin, G. E. De Luca, and N. B. Casas

Use of Extended Adaptive Decision Tables on

Reconfigurable Operating Systems

T

charge of the issue. The three main arguments supporting this

idea are:

First, the kernel developers already have all the skills and

knowledge about its aspects and modes’ inner complexities.

They can design better and faster mechanisms for mode

exchanging so no skills or specific knowledge should be

demanded to their users and programmers whatsoever.

Second, all the applications to be run can be kernel-

agnostic and still harness the benefits of reconfiguration.

Lastly, the kernel can take decisions upon several more

indicators than a programmer could. Some of them may be

inaccessible for a process at runtime, and some other may be

too complex or too kernel-specific for a programmer to take

into account.

We will use Extended Adaptive Decision Tables – from

now on, abbreviated as EADTs – as the device that will allow

us, as designers, give the kernel the mechanism for decision

making based on the behavior of its users.

All the analysis and examples presented in this article were

conducted on SODIUM
1
, a project for an academic

reconfigurable operating system [6] [7] and, more specifically,

its reconfigurable process scheduler aspect.

The rest of this article is organized as follows: Section 2

introduces the reconfigurable kernel design methodology used

to analyze each aspect. Section 3 introduces the SODIUM’s

reconfigurable process administration aspect in more detail. In

section 4, that aspect will be analyzed in order to obtain the

decision taking criteria necessary for the construction of the

initial decision table that will be presented in Section 5. In

section 6 explain what adaptive elements were used in order to

obtain the adaptive decision table. In section 7, we analyze the

extended mechanism that allows for multi-criteria decision

taking in order to generate the final extended adaptive decision

table. Finally, section 8 discusses the future work and tests to

be conducted, and the conclusions of this investigation.

II. RECONFIGURABLE DESIGN METHODOLOGY

The SODIUM project was started back in 2005 with the aim to

give the operating system class’ alumni the opportunity, not

only to grasp the theory concepts, but also to let them

involucrate actively in the development of a kernel. At the end

of each year, all the practices were tested, and the best ones

were integrated into the kernel for the next year’s alumni to

use.

One of the first dilemmas of this methodology emerged

when, predictably, many different modes were programmed

for the same particular aspect. For example, having a basic

fixed partition memory administrator as a base, a practice

asked to develop another one based on paging, forced the

student to replace the existing one. This forcibly implicated a

loss in didactic value since, even though the paging approach

was, in overall, better, the former mode was still useful for

teaching purposes.

Given this situation, the professorship agreed on

implementing a mechanism by which SODIUM could handle

1 Sistema Operativo del Departamento de Ingeniería de la Universidad

Nacional de La Matanza. Web: http://www.so-unlam.com.ar/

multiple modes for any aspect, and that those modes could be

exchanged while still on runtime. The efforts on developing a

design pattern for this mechanism ended up in the

methodology proposed in [1].

In that methodology, four steps had to be conducted upon

each aspect to be designed for re-configurability:

1. The current situation must be analyzed for each

possible transition between modes – if any –, the

kernel mechanism that should be developed, and the

timing level.

2. All the currently available modes should be

enumerated along with a graph showing new ones, in

order to uncover possible missing transitions.

3. Design the reconfigurable aspect indicating

implementation details, timing levels, and element to

be verified for possible data loss for each transition.

4. Design, document, and publish the kernel/user

interfaces for the reconfiguration mechanism.

Although this methodology is useful to design

reconfigurable schemes for existing aspects and modes, it does

not contemplate the decision-taking process. In fact, it ends at

step 4, where it indicates that a kernel/user interface should be

designed. In our proposal, we seek to vary this methodology to

let the kernel reconfigure itself. In order to do so, we shall

replace the former step with a new one:

4. Establish the criteria and events determining the need

for mode changes, and the mechanisms to allow

them.

The timing levels are also important because they indicate

which conditions within the system determine whether a

transition can be executed or not. Four timing levels are

defined. Level 1, when the transition can be only be executed

by recompiling the kernel; level 2, when the transition can

only be executed by rebooting the system; level 3, when the

transition can be executed in runtime, but globally for all

processes; and level 4, when the transition can be executed in

runtime, and in particular for each process.

In the next section, we will use the presented methodology

in order to analyze one of the main reconfigurable aspects of

SODIUM’s kernel.

III. SODIUM’S RECONFIGURABLE PROCESS SCHEDULER

Even though this article presents a general proposal for kernel

decision-taking on re-configurability using EADTs, it is

necessary and much easier to explain its implementation steps

by using an existing reconfigurable aspect as base.

 No other reconfigurable aspect has been more refined and

researched upon in SODIUM than the process scheduler. It

counts with 6 different modes available: Round-Robin (RR),

Round-Robin with Priority Queues (RRPR), Round-Robin

with Variable Quantum (RRQV), First-Come-First-Serve

(FCFS), Shortest-Finishing-Job-First (SJFS), and Best-Time-

Of-Service (BTS). Many of these modes specification are

standards and can be found in specialized operating system’s

books. We used a general specification found in [8] as a base

for almost all of them.

This aspect has the particularity that all of its 6 modes can

transition to all of the others without any limitation. This

means that it counts with 30 different transitions to evaluate.

Also, the timing level for all transitions is 3. This is because

any changes in the process scheduler will forcibly affect all the

process at the same time. No changes can be made

individually for any process.

Since straightforwardly programming 30 different

functions –one for each transition– could result in a bloated

and difficult to understand kernel code, we decided to analyze,

at depth, which actions were to be shared between the

different transitions’ procedures. We identified 8 common

actions that could be normalized and reutilized between all the

procedures. Briefly, these actions are: setbasealg(alg), to set

the basic scheduling algorithm; initPriorities(), to initialize

priorities for RRPR; initQTime() to initialize quantum times

for RRQV; setNonPreemptive() and setPreemptive() to set a

preemptive or non-preemptive scheduler behavior,

respectively; queueMode(mode) to set a unique or level based

ready process queue; and quantumMode(mode), to set a

unique or priority based quantum evaluation. In Table 3.1,

different groups of actions are set and identified with an

alphabet letter codification.

 These groups of actions represent functions that allow the

execution of all the analyzed transitions. The map of actions

per transition can be seen in Table 3.2. The ‘0’ action means

that no procedure should be executed.

In Table 3.2, the SODIUM kernel can query which actions

to execute – all of them are commutative – in order to change

the scheduling mode to another while still on runtime. This is

a key step for an autonomously reconfigurable kernel, and

must be designed by the systems developers. This table will be

used later again in Section 7, when new rules of transition will

have to be created to contemplate new executing conditions.

One of the visible limitations of this approach is that it is

not extensible. All the transactions and groups of actions must

be determined before the programming of the kernel. Any

mechanism that would allow a programmer to enable new

modes would be so complex that it would go against its main

benefits.

 Although this transition-actions relation allow the kernel to

execute transitions by itself, it is still not enough to let it take

decisions. Having this relation between transitions and actions

to be performed is the first step in order to generate a

conventional decision table –from now on, abbreviated as

cTD–. The cTD will hold the first trivial condition-action

mechanism that will indicate the kernel when and what

transitions execute.

IV. DECISION-TAKING CRITERIA

In order to let a transition-mode-actions table, as the one

obtained before, allow the kernel to have decision-taking

capabilities, we need to define two new key elements:

conditions, which will indicate which rules –as a

generalization of what a transition is, in the context of this

article– must execute in a given moment; and events, that

indicate when the conditions must be evaluated.

Events by themselves can be also considered as conditions,

for if they do not trigger, no rules associated to them will be

executed. However, from an operating system’s view, the

distinction is important. Events are codified as trigger

functions set in different parts of the kernel while conditions

are a part of the cTD to be developed. In the case of our

Actions

setbasealg(BTS) x x x x

setbasealg(RR) x x x x x

initPriorities() x x x x x x

initQTime() x x x x

initReorder(CTIME) x x x x x

initReorder(PTIME) x x x x x

setNonPreemptive() x x x x x x x x

setPreemptive() x x x x x

queueMode(UN) x x x x x

queueMode(PR) x x x x

quantumMode(UN) x x x x x

quantumMode(PR) x x x x

Codification a b c d e f g h i j k l m n ñ o p q r s t u v w x y z

 Next Mode

RR PR QV FC SJ BT

C
u

rr
e
n

t

M
o

d
e

RR 0 a b c d e

PR f 0 g h i j

QV k l 0 m n ñ

FC o p q 0 r s

SJ t p q u 0 s

BT v w x y z 0

Table 3.2 – Mode transitions and their set of actions

Table 3.1 – Set of actions and their codification for mode transitions on SODUIUM’s process scheduler

process scheduler, event triggers will be set every time a

process is created, killed, interrupted, or released. This

includes hardware/software interruptions, syscalls, I/O

requests and responses, and process intercommunication

routines.

Defining conditions as such will be a little more difficult. In

order to define in which executing scenarios we will have to

evaluate three different edges of the process scheduling:

scheduling metrics, application categories, and algorithm-

metrics relations.

A. Scheduling metrics

SODIUM’s process scheduler counts with a set of 7 metrics

to evaluate and report the performance of each scheduling

algorithm. Most of them are based on the metrics list present

in [8]. Here is a brief enumeration and explanation for each

one:

- Processor Usage (cpu%) indicates the ratio between the

time the processor spends actually executing processes

and the time that it spends idle or in overhead costly

procedures.

- Throughput (f#) indicates the amount of processes

finished given a finite differential of time. SODIUM

updates this metric every 10 minutes.

- Turnaround Time (cvt) indicates the time that took a

process to completely executes, from when it is created

until it is terminated. It includes the time spent waiting

for enough free memory, to be executed, and I/O

operations.

- Waiting Time (wt) indicates the total waiting time of a

process during all its execution from the moment it is

created. I/O operations or syscalls are not included in

this metric since they represent actual requested

operations from the process.

- Response Time (rt) indicates the average time, for each

process, after which, the first response, such as writing

a character on the screen, is produced after a user

request.

- Effective Time of Service (st) indicates the sum of time

that the process has spent in actual usage of the

processor.

- Overhead (Ov) indicates the time that the processor

spends executing system maintenance or managing

routines.

B. Application Categories

Since it is not possible to know completely what actions

and services will an application request before it is completely

executed, the only way to estimate its future behavior is to

profile it into well-known categories. We focused that

profiling using a technique presented in [9] based on

frequencies of system calls, and maintaining a per-process

profiling information structure such as the ones specified for

the Solaris operating system in [10].

Executing processes fall, after a short period of profiling,

into one of the following application categories defined by us:

Interaction Intensive Applications (II), such as games or

command-line consoles; Multimedia Applications (M), such

as video and audio editing tools; I/O Intensive Applications

(ES), such as DVD burners or data transfer programs; Internet

Applications (WEB), such as web browsers or network

programs; Processing Intensive Applications (P), such as

compilers or scientific programs; and System Applications

(S), such as services or maintenance programs.

After conducting several tests on sample programs that

were successfully profiled, we could establish which metrics

are more important for each application category. In the Table

4.1 we show the most important metrics for each category that

resulted from the tests.

For simplicity reasons, all the other metrics that are not

considered as high priority will be considered as indifferent

for that given category.

C. Algorithm-Metrics Relations

Since we now count with the possibility of profiling a

process into a category, keep scheduling metrics up to date,

and know which metrics favor each category, we only need to

determine which scheduling algorithms (modes) improve

those metrics.

We found some of these algorithm-metric relations already

documented [8] in the bibliography. However, we conducted

additional tests to confirm them, and also figure out those that

were lacking. From these tests, we obtained the results shown

in the Table 4.2. In this table, the beneficial relations in which

the algorithm improves the measures from each metric are

Categories Metrics

Interaction Intensive

Applications

(II)

Response Time

Waiting Time

Multimedia Applications

(M)

Waiting Time

Processor Usage

I/O Intensive Applications

(ES)

Throughput

Response Time

Internet Applications

(WEB)

Effective Time of Service

Response Time

Processing Intensive

Applications

(P)

Turnaround Time

Throughput

System Applications

(S)
Overhead

 Table 4.1 – High priority metrics for each category

marked with a (+); the neutral relations in which the algorithm

doesn’t affect the metric are marked with a (0); the negative

relations are marked with a (-), and the (x) marks indicate that

the algorithm is extremely negative to the metric.

 Metric

Algorithm %cpu #f tcv tw tr ts ov

RR + 0 - 0 0 0 0

RRPR + 0 0 + 0 x 0

RRQV 0 0 0 0 + x 0

FCFS - 0 + x x x +

SJFS - + + x x x -

BTS - 0 - - 0 + -

We can now combine Tables 4.1 and 4.2 in order to obtain

an algorithm-category rating in which the score will indicate

how much each algorithm benefits/handicaps each application

category. The amount of (+) marks per each high priority

metric that the algorithm beneficiates will score 1 positive

point for that category; (-) will rest 1 point; (0) will produce

no effect; and (x) marks will completely disqualify the

algorithm. The results from the combination are presented in

the Table 4.3.

 Algorithm

Category RR RRPR RRQV FCFS SJFS BTS

 (II) 0 1 1 X X 0

 (M) 1 2 0 X X 0

 (ES) 0 0 1 X X 0

 (WEB) 0 X X X X 1

 (P) -1 0 0 1 2 -1

 (S) 0 0 0 1 -1 -1

V. CONVENTIONAL DECISION TABLE

The rating information obtained in the Table 4.3 is enough to

decide which scheduling algorithm to use when the processes

in execution pertain to the same application category.

However, this scenario doesn’t cover all the execution

possibilities.

 It could happen that only one process is in the ready queue.

This case may be important for batch processing systems.

Using a overhead costly algorithm in these cases is not

convenient. Therefore, we can establish that in case of mono-

processing (mono), the algorithm used will be FCFS.

 Also, a more common scenario is that when different

processes of different categories try to execute concurrently.

In this case, using the rating from Table 4.3 can be misleading,

because we are using simple heuristic and empiric information

on complex cases. In fact, there are 720 different

combinational scenarios of mixed categories. This complexity

cannot be addressed a priori, by analyzing each case in

particular. This case of multi-category (multi) will be resolved

using an adaptive decision table –from now on, abbreviated as

ADT– to be developed in the next section.

By now, we can contemplate the general case of multiple

categories with the most generally acceptable of the

scheduling algorithms: RR.

The mono, multi, and the pure categories processes can be

interpreted as the conditions that, without combining with

each other, determine the whole universe of possible execution

scenarios. Also, we know which algorithm to use for each

condition, we can establish the transitions –and their actions–

to execute in each case by combining Tables 4.3 and 3.2.

We now have all the elements to elaborate the first cDT for

the SODIUM kernel to decide which algorithm use at each

moment. It will consist in a set of 30 rules combining

conditions –current mode and current scenario– and their

transition actions. The cDT for the SODIUM process

scheduler is shown as the Table 5.1.

VI. ADAPTIVE DECISION TABLE

A. Normalized Base cDT

The condition evaluation in the cDT of the Table 5.1 obeys to

that of an inclusive OR. This means that, it takes only one

Rules
 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

C
o
n
d
it
io

n
s

Current

Mode

R

R

R

R

R

R

R

R

R

R

P

R

P

R

P

R

P

R

P

R

Q

V

Q

V

Q

V

Q

V

Q

V

F

C

F

C

F

C

F

C

F

C

S

J

S

J

S

J

S

J

S

J

B

T

B

T

B

T

B

T

B

T

Current

Scenario

Mono x x x x x

II x x x x x

 M x x x x x

ES x x x x x

 WEB x x x x x

P x x x x x

S x x x x x

Multi x x x x x

Actions func() a b c d e f g h i j k l m n ñ o p q r s t p q u s v w x y z

Table 4.3 – Rating relation table between algorithms and

application categories.

 Table 4.2 – Relations between metrics and algorithms

Table 5.1 – Conventional Decision Table for SODIUM Process Scheduler

condition to be true in order to execute a given rule. For

example, rule 2 will execute if a Mono scenario is detected and

also if it detects an ES scenario. However, the formal

definition of the cDT, that we must use as a base for

developing the more complex ADTs in order to contemplate

all the possible scenarios from the generalized Multi, requires

the conditions to be evaluated with an AND logic. For this, it

will be necessary to add duplicated rules that contemplate one

of the conditions that will be eliminated from the original one.

Also, we need to eliminate mono scenario corresponding rules

because they can be directly programmed into the scheduler;

and those corresponding the multi scenario, because the ADT

will allow us to contemplate all the particular rules of

combining categories scenarios.

 Another modification to the original cDT is the addition of

the not mark (-) indicating that that condition must be false in

order to execute that rule. The resulting fixed cDT is shown in

the Table 6.1 (some of the rules have been bypassed in the

representation for format purposes).

 1 2 3 4 5 6 7 8 …
2
4

2
5

2
6

2
7

2
8

2
9

3
0

Current

Mode

R

R

R

R

R

R

R

R

P

R

P

R

P

R

Q

V
…

P

R

Q

V

F

C

S

J

S

J

B

T

B

T

II - x - - x - - - … - - - - - - -

 M x - - - - - - x … - - - - - - -

ES - - - - - - - - … - - x x - x -

 WEB - - - x - - x - … - - - - - - -

P - - x - - x - - … - - - - - - -

S - - - - - - - - … x x - - x - x

func() a b d e g i j l … h m q q u x y

B. Adaptive mechanism

In order to contemplate new rules for complex scenario

conditions, such as II and M category processes running

simultaneously, we will have to add adaptive mechanisms to

our static cDT in order to turn it into a ADT. ADTs formal

definition [11] [12] requires the specification of a normalized

base cDT such as the one in Table 6.1, and also the addition of

adaptive functions to perform rule query, elimination, and

insertion actions upon it.

 In this investigation, we used a simple adaptive mechanism

that consists in the usage of two different adaptive functions.

One is used to verify the existence of rules contemplating the

current execution scenario. The other is used to add a new rule

in case that no such rules were detected.

 These adaptive functions called Ad1 and Ad2, execute after

and before their calling rules, respectively. Ad1 only sets the

value of the state variable to D (determined) when an existing

rule can manage the current state of conditions. When no rule

can handle the current conditions, a new rule (31) is in charge

to set the state variable to ND (non-determined). This variable

is set back by the execution of Ad1, in case that a rule was

found. On the next step, if the state is equal to ND, another

new rule (32) executes the Ad2 adaptive function.

 The Ad2 adaptive function is in charge to add 6 new rules.

These new rules will transition to the current mode from any

other mode given the current conditions. The result for this is

that, whenever in the future, when the same conditions repeat,

they will transition to the mode in which those conditions

were found initially. The rationale behind this is that, when a

new set of conditions is found, is probably because only one

new different category process was created, where there is a

whole group of processes of an existing category already

running. By doing this, we try to maintain the benefits of the

current mode for the existing processes.

 The implementation of this mechanism onto the

subjacent cDT in order to generate the first SODIUM process

scheduler ADT is shown as the Table 6.2.

 Adaptive Functions Declarations Rules

Ad1 Ad2
0 1 2 3 …

2

6

2

7

2

8

2

9

3

0

3

1

3

2

3

3

 H ? H + + + + + + S R R R R R R R R R R R E

Conditions

Current

Mode

 R

R

P

R

Q

V

F

C

S

J

B

T

R

R

R

R

R

R
…

F

C

S

J

S

J

B

T

B

T

State … N

II C1 C1 C1 C1 C1 C1 - x - … - - - - -

 M C2 C2 C2 C2 C2 C2 x - - … - - - - -

ES C3 C3 C3 C3 C3 C3 - - - … x x - x -

 WEB C4 C4 C4 C4 C4 C4 - - - … - - - - -

P C5 C5 C5 C5 C5 C5 - - x … - - - - -

S C6 C6 C6 C6 C6 C6 - - - … - - x - x

Actions
func() $m $m $m $m $m $m 0 a b d … q q u x y
State= D … N

Adaptive

Functions

Ad1 A x x x x x x x x x x x x x x x x

Ad2 B x

Table 6.1 – Normalized cDT

Table 6.2 – Adaptive Decision Table for SODIUM Process Scheduler

 The action to be performed by every new rule is set by the

$m function that takes the rule’s own starting mode and the

current mode –as destination mode– as parameters to obtain

the specific set of actions for that transition. The result of

executing $m are exactly those found in the Table 3.2.

 An example of its adaptive functions can be illustrated as

when a new scenario is detected in which the (M) and the (S)

conditions are detected simultaneously. Six new rules are

created to handle those conditions in combination with the six

possible current modes, and are added to the subjacent cDT.

The Table 6.3 shows the effect of their execution, highlighting

the new rules in shaded green.

However basic, this mechanism actually learns from the

users’ behavior, and will converge into a complete 720 rules

cDT differently for each user, or each run. On the other hand,

it shows some limitations on the fact that, once created, the

new rules can’t be modified, even if the reaching scenario

should indicate a new transition for that rule. Also, it doesn’t

provide the ability to contemplate multiple criteria for the

decision making process. These problems are addressed by

using the extensions shown in the following section.

VII. EXTENDED ADAPTIVE DECISION TABLE

The ADT obtained in the previous section allows the creation

of new rules that contemplate conditions that were not

included in the original cDT. However, the only criterion used

for determining the transition actions was that of maintaining

the original current mode. This criterion, doesn’t contemplate

the usage of direct indicators of performance such as the

metrics, nor a mechanism to alter the already created rules.

Therefore, it is necessary to extend the definition of our ADT

in order to include specific functions that could decide which

mode to utilize based in the relation between the processes

categories and the maintained metrics.

 We will recur to the formal definition of the EADT from

[13] and [14] in which multiple criteria can be defined in order

to determine an alternative.

The original formulation consists on a base ADT such as the

one obtained in the Table 6.2 and the addition of auxiliary

functions (FM) that execute prior any other action and define

values for variables that those actions will use.

 In our case, we want to define the destination mode

parameter for the function $m using a multi-criteria method.

The required steps for defining the method consist in three

modules:

 Module I consists in the identification of the different

criteria –metrics, in our case– and alternatives –modes– for the

decision problem. Their quantitative relation will define, in

each case what alternative will be better for each scenario

taking the metrics as reference. In our case we define the a C

set of conditions, and an A set of alternatives as the following:

 Criterion Preference

Category %cpu #f tcv tw tr ts ov

 (II) 1 1 1 3 3 1 1

 (M) 3 1 1 3 1 1 1

 (ES) 1 3 1 1 3 1 1

 (WEB) 1 1 1 1 3 3 1

 (P) 1 3 3 1 1 1 1

 (S) 1 1 1 1 1 1 3

 Adaptive Functions Declarations Rules

Ad1 Ad2

0 1 2 3 …
2

6

2

7

2

8

2

9

3

0

3

1

3

2

3

3

3

4

3

5

3

6

3

7

3

8

3

9

 H ? H + + + + + + S R R R R R R R R R R R E R R R R R R

Current Mode
 R

R

P

R

Q

V

F

C

S

J

B

T

R

R

R

R

R

R
…

F

C

S

J

S

J

B

T

B

T

R

R

P

R

Q

V

F

C

S

J

B

T

State … N

II C1 C1 C1 C1 C1 C1 - x - … - - - - - - - - - - -

 M C2 C2 C2 C2 C2 C2 x - - … - - - - - x x x x x x

ES C3 C3 C3 C3 C3 C3 - - - … x x - x - - - - - - -

 WEB C4 C4 C4 C4 C4 C4 - - - … - - - - - - - - - - -

P C5 C5 C5 C5 C5 C5 - - x … - - - - - - - - - - -

S C6 C6 C6 C6 C6 C6 - - - … - - x - x x x x x x x

func() $m $m $m $m $m $m 0 a b d … q q u x y c h m 0 u y

State= D … N

Ad1 A x x x x x x x x x x x x x x x x x x x x x x

Ad2 B x

Table 7.1 – Criterion preference by category

Table 6.3 – Example of an ADT creating new rules for a formerly non-contemplated (M) and (S) Scenario

 Module II consists in obtaining a Z matrix of performance

for each combination of criteria and alternatives. Using the

Saaty fundamental scale for comparing the relative importance

of each criterion with each category we could elaborate the

Table 7.1.

On the other hand, we define the importance of each

criterion pair will vary regarding the amount of processes of

each category that is ready to execute multiplied by the

criterion preference shown in the Table 7.1. For example, for

an scenario where 2 (II) category processes, and 1 (S) category

process are ready, the importance of the tw and tr metrics will

be equal to 6, and that of the ov will be 3.

With those values in mind, a criteria pair preference can be

elaborated for the example as the one shown in the Table 7.2.

 Criterion Preference

Criteria %cpu #f tcv tw tr ts ov

%cpu 1 1 1 6 6 1 3

#f 1 1 1 6 6 1 3

tcv 1 1 1 6 6 1 3

tw 1/6 1/6 1/6 1 1 1/6 3

tr 1/6 1/6 1/6 1 1 1/6 3

ts 1 1 1 6 6 1 3

ov 1/3 1/3 1/3 1/3 1/3 1/3 1

The values of the Table 7.2, obtained for this particular

example, will vary depending on the current conditions

scenario and the amount of processes per category.

Nevertheless, continuing with the example, a normalized final

Z matrix of performance can be obtained as the one shown in

the Table 7.3.

 Criterion Preference

Total

Preference

Category %cpu #f tcv tw tr ts ov

Multiplier x 1 x 1 x 1 x 6 x 6 x 1 x 3

RR 0,35 0,13 0,05 0,18 0,16 0,23 0,15 0,17

RRPR 0,35 0,13 0,15 0,54 0,16 0,03 0,15 0,28

RRQV 0,12 0,13 0,30 0,02 0,02 0,03 0,45 0,25

FCFS 0,06 0,13 0,30 0,02 0,02 0,03 0,45 0,11

SJFS 0,06 0,38 0,30 0,02 0,02 0,03 0,05 0,06

BTS 0,06 0,13 0,05 0,06 0,16 0,68 0,05 0,13

It can be seen on Table 7.3 that, for the example with two

(II) processes, and one (S) process, results in a better

preference for the RRPR mode, just above that of the RRQV

mode. The Z matrix will be regenerated completely based in

the amount of ready processes per category each time that an

adaptive function calls to a z_gen() named function. Another

z_get() named function will be used to obtain the most

preferred scheduling mode from the current newest Z matrix.

Module III consists in the development of the functions for

the insertion of new rules for the non-contemplated scenarios

in the moment that they are detected. This was already

achieved in the TDA presented in the Table 6.2.

 It will only take to add calls to the z_gen() and z_get()

functions along with a new variable m to hold their obtained

value. In the Table 7.4 the final form of the EADT for the

SODIUM process scheduler is shown.

Until now only brief tests and simulations for testing the

EADT performance regarding different simple scenarios has

been conducted due to the initial complexity of the

implementation. Their results were satisfactory although yet

not sufficient to determine its full potential. We estimate that

in the next few months, new developments will support the

usage of this powerful tool.

 Adaptive Functions Declarations Rules

Ad1 Ad2
0 1 2 3 …

2

6

2

7

2

8

2

9

3

0

3

1

3

2

3

3

 H ? H + + + + + + S R R R R R R R R R R R E

Conditions

Modo

Actual

 R

R

P

R

Q

V

F

C

S

J

B

T

R

R

R

R

R

R
…

F

C

S

J

S

J

B

T

B

T

Estado … N

II C1 C1 C1 C1 C1 C1 - x - … - - - - -

 M C2 C2 C2 C2 C2 C2 x - - … - - - - -

ES C3 C3 C3 C3 C3 C3 - - - … x x - x -

 WEB C4 C4 C4 C4 C4 C4 - - - … - - - - -

P C5 C5 C5 C5 C5 C5 - - x … - - - - -

S C6 C6 C6 C6 C6 C6 - - - … - - x - x

Extended Adaptive

Actions

z_gen() x

z_get() m

Actions
func() $m $m $m $m $m $m 0 a b d … q q u x y

Estado= D … N

Adaptive Functions Ad1 A x x x x x x x x x x x x x x x x

Ad2 B x

Variables m V x

Table 7.3 – Matrix Z of alternatives preference

Table 7.2 – Relative preferences between criterion pairs

Table 7.4 – Final form of the EADT for the SODIUM process scheduler

VIII. CONCLUSIONS AND FURTHER WORK

With the usage of EADTs we were able to figure out

alternatives for execution conditions of an aspect of an

operating system that were too complex or inaccessible to

figure out a priori. It also provided the kernel with the

capability of changing the existing rules based on the new

process usage behavior of each user. While these features may

be possible to attain otherwise, none of the other existing

adaptive devices provide such an intuitive mechanism for

specifying rules and adaptive functions.

 Although we are still lacking actual results from tests

conducted on a variety of complex scenarios, the preliminary

results on simple executions show that the decision tables

converged into ideal solutions in each case, and that the kernel

was actually learning from the process scheduler events. This

actually serves as a demonstration that, so far, it is possible to

create an automatic adaptive reconfiguration mechanism for a

kernel without the supervision or explicit interactions with the

users and their application.

There is still much potential to be harnessed from the

EADTs. For example, we are not yet using the measures from

the different metrics to evaluate each algorithm benefits from

the actual execution. Doing this would converge and replace

the initial heuristics on the algorithm-metrics relation tables.

Regarding SODIUM, there are other aspects of its design

that are yet to be analyzed and converted into adaptively

reconfigurable. That work should be done in the following

months, during which we would still testing the results of the

adaptive process scheduler.

Perspectives on the usage of adaptive mechanisms for

automatic non-interactive reconfiguration are promising.

These could be applied on any other home or enterprise

operating systems in the market without the need of re-

engineering their existing applications. An initial cost should

be paid, nonetheless; mechanisms for automatic

reconfiguration must be developed and provided as inputs for

the EADTs, conditions must be analyzed, and events must be

set.

REFERENCES

[1] S. MARTIN, N. CASAS, G. DE LUCA, “Diseño de un sistema operativo

reconfigurable para fines didácticos y prácticos”. 6° Workshop de

Tecnologia Adaptativa. San Pablo, Brasil, 2012.

[2] A. C. VEITCH, N. C. HUTCHINSON, “Kea – a dynamically extensible and
configurable operating system kernel”, 3rd International Conference on

Configurable Distributed Systems. Vancouver, Canada, 1996.

[3] C. COWAN, T. C. AUTREY, C. KRASIC, C. PU, J. WALPOLE, “Fast
concurrent dynamic linking for an adaptive operating system”. 3rd

International Conference on Configurable Distributed Systems.

Vancouver, Canada, 1996.
[4] B. N. BERSHAD, S. SAVAGE, P. PARDYAK, E. G. SIRER, M. E.

FIUCZYNSKI, D. BECKER, C. CHAMBERS, S. EGGERS, “Extensibility:

Safety and Performance in the SPIN Operating System”. 5th Symposium
on Operating Systems Principles. ACM, New York, United States, 1995.

[5] R. LEA, Y. YOKOTE, J. ITOH. “Adaptive operating system design using

reflection”. Object-Based Parallel and Distributed Computation. Volume
1107, Springer Berlin, 1996.

[6] N. CASAS, G. DE LUCA, M. CORTINA, G. PUYO, W. VALIENTE,

“Implementación de distintos tipos de memoria en un sistema operativo
didáctico”. XIV Congreso Argentino de Ciencia de la Computación. La

Rioja, Argentina, 2008.

[7] H. RYCKEBOER, N. CASAS, G. DE LUCA, “Construcción de un Sistema

Operativo Didáctico”. X Workshop de Investigadores en Ciencias de la
Computación. La Pampa, Argentina, 2008.

[8] A. SILBERSCHATZ, P. B. GALVIN, G. GAGNE. “Operating System

Concepts”. 8va Edición. John Wiley & Sons, New Jersey, United States,
2012.

[9] S. M. VARGHESE, K. P. JACOB, “Process Profiling Using Frequencies of

System Calls”. The Second International Conference on Availability,
Reliability and Security (ARES'07). Viena, Austria, 2007.

[10] R. MCDOUGALL, J. MAURO, “Solaris Internals”. Second Edition.

Prentice-Hall. California, United States, 2007.
[11] J. J. NETO, “Adaptative rule-driven devices - general formulation and a

case study”. Sixth International Conference on Implementation and

Application of Automata. Pretoria, South Africa, 2001.
[12] T. PEDRAZZI, A. TCHEMRA, R. ROCHA, “Adaptive Decision Tables A

Case Study of their Application to Decision-Taking Problems”.

Adaptive and Natural Computing Algorithms, Springer. Vienna, Austria,
2005.

[13] A. H. TCHEMRA, “Tabela de decisão adaptativa na tomada de decisões

multicritério”. Phd Thesis. Escola Politécnica, USP, San Pablo, Brasil,

2009

[14] A. H. TCHEMRA, “Adaptatividade na Tomada de Decisão Multicritério”.

4° Workshop de Tecnologia Adaptativa. Escola Politécnica, USP, San
Pablo, Brasil, 2010.

[15] T. L. SAATY, “Método de Análise Hierárquica”. McGraw-Hill. San

Pablo, Brasil, 1991.

Sergio Miguel Martin is a Software Engineer from
Universidad Nacional de La Matanza (UNLaM),
Buenos Aires, Argentina since 2010. He performs as
a teaching assistant on the operating systems class
since 2010; and on the automata and formal
languages class since 2011. He is currently finishing
his master thesis on Software Engineering on the
same university. His main investigation fields are
operating systems and high-performance computing.

Graciela Elisabeth De Luca Is a Systems Analyst from
the Universidad Tecnológica Nacional, and Bachelor of
Computer Science from the Universidad Católica de
Salta. Since 2005, belongs to the SODIUM research
group of the Universidad Nacional de La Matanza. Also
performs as professor for the Operating Systems Class.

Nicanor Blas Casas, Is a Software Engineer from the
Universidad the Universidad Católica de Salta. Since
2005, belongs to the SODIUM research group of the
Universidad Nacional de La Matanza. Also performs as
the associate professor for the Operating Systems Class.

