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 Abstract

Current hardware for compute intensive 

tasks includes a large amount of processing fa-

an optimized way. High performance computing 

(HPC) is always focused in solving challenging 

(or, at least, compute intensive) problems for 

which the response time is the priority. We have 

been working from two different but usually com-

plementary research problems: a) updating and 

parallelizing legacy (HPC/numerical) software, 

and b) analyzing different problems and approa-

ches to optimization and parallel processing in 

clusters. We have found that raw hardware event 

counters do not always directly provide useful 

information. We also found some guidelines for 

evaluating performance using those counters in 

the context of optimization and parallelization. 

In this article, we present those guidelines along 

with the performance evaluation tools that we 

used to determine objectively what parts of the 

algorithm offered better chances of improvement.

Keywords: High Performance Computing, 

Source code optimization, Performance Eva-

luation, Parallel Computing, Cluster Compu-
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1. Introduction

High performance computing (HPC) 

in clusters is one of the most popular 

approaches for solving compute, or more 

tasks. Computers currently used as cluster’s 

nodes usually range from low end desktop/PC 

computers (which are economically cheap) to 

high end servers/PCs. Terms such as  end 

 and  have 

market status. We will refer to them just as PCs 

or cluster nodes, emphasizing on their proven 

advantageous features, which at least include 

low price and high availability [10] [13]. 

Furthermore, we will refer to clusters as shown 
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in Fig. 1: a local area network of computers 

made up of commodity hardware components. 

Cluster nodes, as shown in Fig. 1 are expected 

to be multi-core computers sharing memory, 

even in NUMA (Non-Uniform Memory 

Access) hardware [4]. The most commonly 

used interconnection network is 1Gb/s Ethernet 

(availability/commodity hardware, cost), but 

almost any other interconnection network could 

Figure 1. Cluster used for HPC.

There are two levels or types of parallel 

processing in current clusters: intra node 

and cluster-wide (inter-nodes). The most 

common programming models for parallel 

processing in clusters are the message passing 

and shared memory (threaded) ones. Message 

passing is usually implemented by using some 

(message passing library) implementation of 

MPI (Message Passing Interface) [9], such as 

OpenMPI. Shared memory parallel processing 

can be implemented in terms of OpenMP [10], 

which is currently implemented by most C 

and Fortran compilers. Also, it is possible to 

combine both programming models (message 

passing and shared memory) in the so called 

hybrid approach as in [12].

From the point of view of HPC applications, 

legacy software has a strong need to be 

updated to the new multi-core environment/s. 

with strong problems when facing (updating, 

etc.) legacy software, but HPC applications 

in particular have to be parallelized since the 

processors’ clock rate is not going to increase 

beyond 3.8-4.2 GHz in the near future [14] 

[5] [16]. However, legacy software is not the 

only software which needs to be parallelized 

or even updated. New algorithms and new 

parallel platforms are always analyzed in order 

to model and optimize performance. Also, new 

applications and new applications sizes are 

taken into account as more cores are included 

in a multicore chip and more computers are 

available (or interconnected) for parallel 

computing.

New microprocessors also include new 

microarchitectures which not always are fully 

exploited for maximum performance. Moreover, 

new microprocessors often provide access to 

(internal) performance counters in order to 

analyze and optimize runtime performance [1] 

[6]. Interestingly, performance is associated to 

debug in [1], which includes a chapter named 

“Software Debug and Performance Resources” 

(Chapter 13). This  would also 

provide an idea of the related complexity.

This possibility of measuring hardware 
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counters as a way to determine the performance 

of the algorithms being executed motivated us 

Perfsuite [8], to determine how our algorithms 

performed in such low-level. Before we did this 

research, we had to use a “guessing” and code 

analysis approach to determine which could 

be the causes of performance degradation, 

especially on multi-core architectures. Even 

though we could achieve some improvement, 

the exact causes of the initial problems 

remained undiscovered.

However, using tools to access and 

analyze hardware counters, allowed us to 

get a more objective idea of how to improve 

our algorithms. In this article, we will show 

how we used Perf and PerfSuite to determine 

provided us with the clues as to how to increase 

their performance. As a result of using these 

tools, we could objectively determine which 

were the causes of several of their performance-

degrading problems. We would expect other 

scientist programmers to apply these same 

tools on their algorithms, and analyze these 

same counters in search of analog opportunities 

to improve their performance.

The rest of this article is organized as 

follows. Section 2 describes the classical 

performance metrics and hardware performance 

event counters (which are also referred to 

as hardware performance monitoring event 

counters). The main concepts for performance 

evaluation and our initial work on a  

legacy program are explained in Section 3, with 

and experimentation. Section 4 introduces 

a complete example based on a well known 

problem and focused on parallelization, and 

the effect of some classical optimizations 

on parallel performance and the so called 

 wall related to parallel computing on 

multicore multiprocessors. Finally, includes 

several conclusions and further work taking 

into account the work done and explained in 

this paper, mainly on legacy as well as parallel 

code. 

2. Performance Metrics and Coun-
ters

Performance has been always the ultimate 

performance has been measured directly in 

terms of runtime or rates of instructions or 

per second). Parallel performance has been 

measured also in terms of (plain) runtime or 

(2) respectively [16], where  is the number 

of processors,  is the runtime of the 

optimum sequential algorithm, and pt(p) is the 

parallel elapsed runtime using  processors. It 

is expected (but not always possible) to obtain 

a  value near p, since it means that 

every processor has been used for a 1/p fraction 

of the total processing to be done.

 

(1)

It is worth noting that 0 < 

1,    (at least in non pathological cases), and 

values of p) near 1 indicates that 

about 100% of computing resources are used 

at runtime. 
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such as PAPI (Performance API) [18] provide 

more or less general and vendor independent 

information. 

3. Legacy Code Example

We have selected a global climate model 

as an example of legacy code example: GISS-

AOM(C4x3) from GISS, the NASA Goddard 

Institute for Space Studies [11]. We have 

experimented with this legacy Fortran code 

looking for several interesting information 

regarding compilers, performance counters, 

legacy code optimization, and prospective 

issues for parallelization:

code behavior and optimization. We consider 

the starting points as a completely unknown 

and monitoring events provide a basis for a 

methodology on enhancing such legacy source 

code.

compilers, mostly from the point of view of 

performance and optimization levels. We 

have used gfortran and ifort (Intel Fortran 

compiler). We are not interested in compiler-

extensions, and this is why we have used   

“-O[1/2/3]” optimization levels.

performance, based on monitoring events 

reported by the processor/s.

We have used PerfSuite as a high level 

approach for gathering hardware performance 

events information, i.e. to avoid doing a direct 

analysis of lower level tool results such as perf 

 

(2)

We could argue that in the end, every 

performance metric is computed using elapsed 

runtime. On one hand, it is fair enough, since 

runtime is  of the underlying 

processing hardware. But on the other hand, 

given a performance value, it is hard or unlikely 

penalties. There are some  guidelines 

to look for performance penalties in the 

parallel processing area. Most of the parallel 

algorithms try to solve several communication, 

synchronization, and/or computing (un)balance 

problems. At this point, hardware performance 

information of the hardware performance. 

Having access to hardware performance 

counters tends to reduce the number of 

of the available hardware. Thus, we can 

use performance (monitoring) counters for 

identifying (some) performance penalties and 

evaluate algorithms changes which are made 

for optimization/s [9] [2] [3] [7]. Unfortunately, 

low level information, which is not always 

directly/easily related to the algorithms. We 

will show that performance counters have to 

experiments have to be carried out to collect 

relevant data. We will avoid using proprietary 

manufacturers’ tools and hardware/model low 

level information whenever possible (e.g. Intel 

From this point of view, tools such as perf  and 

API (Application Programming Interfaces) 
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[19] and instrumentation libraries such as PAPI 

[18]. A general syntax of usage for PerfSuite as 

used in our experiments is shown as follows:

 

Where  is the output previously 

generated by perf, program is the binary to 

generated by PerfSuite.  will then 

The experiments were carried out using the 

Intel Core i5-2400 (3.1 GHz) and the Intel Xeon 

x5550 (2.66 GHz), with Linux (kernel 2.6.38). 

Most of the results are similar in both compilers 

and platforms, so we present averages and/or 

main characteristics which are independent of 

shown that more than 80% of the total runtime 

is spent in 21 subprograms (Fortran functions 

and subroutines). This means that most of the 

optimization and parallelization effort should 

be employed in those 21 subprograms. For 

large legacy applications, this could be a huge 

reduction in the amount of source code to work 

on. 

performance of the legacy software, we used 

several optimization options, shown in Table 

I. Most of the improvement is obtained in the 

to reduce the runtime to the 62% of the non-

optimized binary code. In this case, the second 

optimization level added some gains (which is 

not always obtained, i.e. in all hardware and 

compiler variants).

Table I. Optimization gains (time 

reduction)

We have collected available information 

the data in Table II, for a reduced number of 

counter data. Clearly, raw numbers collected 

from the hardware do not provide any useful 

information. However, with the event counters 

data it is possible to obtain information not 

only about optimizations, but also about 

optimization focus. 

Table III shows the improvement in cache 

misses, i.e. the reduction in (instructions and 

data) caches and TLB (Translation Lookaside 

Buffer) misses when using  O1 relative to those 

obtained with –O0 (no compiler optimization). 

Most of the performance improvement provided 

by the -O1 optimization level is due to the very 

good work of the compiler on the instructions. 

Compilers are able to optimize the available 

resources in hardware pipelines, superscalar 

units, branch prediction, and almost every 

hardware facility for ILP (Instruction Level 

Parallelism). Branch instruction event counters 

can be also used to support this behavior:

been lowered by 11.95%.

instructions have been decreased by 

36.49 %.

instructions have been decreased by 

37.97 %.
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Table II. Raw event counters numbers

Table III shows that almost no performance 

enhancement is obtained by taking advantage 

of data cache/s. 

Table III.  Misses (caches and TLB) 

improvement with -O1

It is worth noting that legacy code 

parallelization has a strong relationship with 

data usage (accesses to cache/s and main 

memory, i.e. the memory hierarchy), since it 

is nearly impossible to recode or change the 

underlying algorithms on almost unknown 

code. At least in the initial parallelization stages/

tasks, the basic algorithm is kept unchanged 

and the way in which data and threads and/or 

facility is used. It is clear from Table III that 

taken into account (preferably at early stages) 

in the parallelization work.

4. Parallelization Example

In [15] is reported the work on a very simple 

but time consuming algorithm used for N-body/

particle simulation. It has also been shown how 

tiling (a very common optimization technique 

for memory accesses) has made possible a huge 

performance gain for two, four, and eight cores 

improvement in sequential computing: 

less than 10% [15].

Eq. (2), becomes greater than 95% for 

2, 4, and 8 cores (using two quad-core 

processors). Conversely, when tiling 

two threads and drops to 0.51 for eight 

threads (running on eight cores sharing 

main memory) [15].

We had not to determine if it is possible 

to identify the memory contention using 

performance monitoring counters. To answer 

this question, we used perf [19] in order to 

experiment and gather information about 

hardware. We have found that perf is a 

simple yet powerful tool, and easier to install 

than PerfSuite, which also depends on other 

software/libraries, such as PAPI. We run 

in C language) for identifying cache events, 

i.e.:

this is useful to avoid long experiments 

runtime as well as issues due to memory 
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accesses other than memory contention.

2, 4, 6, and 8.

The syntax used for our experiments 

using perf is shown as follows:

 

             

        

after a –

cache load misses, and LLC load misses to 

represents the OMP version of our N-body 

algorithm that is being run for 10000 and one 

step.

The results of this experiment are shown in 

(Eff.), and the percentage of Last Level Cache 

(LLC) and L1 data cache misses relative to 

the “previous” number of threads experiment. 

Initially, we ran experiments with 2, 4, and 8 

threads, and we found a huge performance loss 

about 0.47 for 8 threads, when it was about 0.98 

when 4 threads process data. Thus, we added 

several experiments with one more number of 

threads in between 4 and 8, i.e. 6, so that we 

are able to analyze the performance problem in 

detail.

Table IV.  Cache load misses (relative 

 Level 1 data cache load misses

 Last Level Cache load misses

We use “previous” in the sense of number 

of “previous number of threads” because it 

highlights the main differences related to 

algorithm scalability. For example, Table IV 

shows that the number of L1 data cache misses 

is almost constant for 1, 2, and 4 threads, since 

for 2 cores, it is about 100% of the misses for 

reported for 1 core, and, rather surprisingly, the 

number of L1 data cache misses for 4 threads 

is 92% of the L1 data cache misses for 2 

threads. Minor differences could appear given 

to the statistical nature of event counting by 

multiplexing hardware counters.

The parallel performance is very good 

For 2 and 4 threads, i.e. both have more than 

in performance and scalability for 6 and 8 

threads. One could be confused by the increase 

of 326% of L1 data cache misses for 6 threads 

regarding the number of L1 data cache misses 

for 4 threads. Actually, the real problem is the 

huge increase of 599% LLC-lm for 6 threads 

regarding those for 4 threads. Part of that 

599% LLC-lm is “hidden” by the other level/s 

of cache/s, but it is clear that data from main 

memory is not arriving at the rate the processor 

are 6 threads requiring data to process from 

the same memory, and from those 6 threads, 4 

threads share the LLC in a quad-core processor 

while the other two needs almost the same data 

to process in the other processor. The situation 

is even worse for 8 threads, as expected: there 

are 358% more LLC load misses than for those 

happening for 6 threads. 

These results show clearly that using more 

cores imply more shared memory contention 
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when the threads are not running in the cores 

of a unique processor (thus having access to the 

shared LLC). Even though processing-time is 

of adding them are severely reduced. This lead 

us to think that there may be a shared LLC 

cache throughput limit that, at a certain demand, 

collapses and reduces the overall performance. 

Once this limit is reached, penalization for L1 

cache misses is much more time-consuming. 

Therefore, the overall per-core speedup is 

reduced. In our case, this limit is reached when 

using more than 4 cores (on the 6 and 8 core 

cases).

Previous research [17] indicate us that this 

so-called  is quickly found not only 

when a processor runs faster but also when more 

cores run in the same processor, which is our 

case for the 6-8 core run. The number of cores 

per processor and the number of processors 

sharing main memory can be increased, but 

performance would be unacceptable (or even 

disappointing) if memory and/or the algorithms 

are not improved/optimized/adapted. There is 

clear evidence now about what we explained 

by the end of the previous section: data cache 

improvement has to be taken into account 

(preferably at early stages) for parallel 

computing. We have collected and shown in 

event counters evidence. 

5. Conclusions and Further Work

Until we performed this research, we had 

to rely on guessing techniques, and high-level 

analysis to determine which were the causes of 

performance degradation on our parallel and 

legacy codes. Although some of our results 

were positive [15] [16], we were still lacking 

a formal method to know the exact causes (or 

their amount) that caused this degradations. 

Now, most of this classical guesswork used in 

optimization and parallelization performance 

analysis is now supported by performance 

counters. 

information is now possible to be gathered for 

almost unknown (legacy) and self developed 

source code. Furthermore, we can access to 

and collect information from the performance 

event monitoring counters from different 

programming languages, such as Fortran and 

C (which, besides, are among the most popular 

languages in HPC).

Even when the optimization and 

parallelization problems remain the same in the 

long term, performance counters provide very 

useful information for both tasks. Moreover, 

new possibilities could be explored based on 

shown that single events are not necessarily 

good enough for performance analysis, but 

having a minimum knowledge of hardware 

architecture/s will lead to combine events so 

that the searching space for optimizations 

and parallelization would be narrowed down 

without missing important details. 

Performance event counters do not solve by 

themselves optimization- and parallelization- 

related problems, they help taking informed/

supported decisions. Moreover, low level 

hardware details (those accounted for by event 

counters) could produce an unmanageable 

amount of information and should be used 

carefully. So far, there is no general methodology 

for approaching a program using performance 

event counters, and we are working on 
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tool o set of tools for aiding HPC programmers 

for optimization and parallelization.

Similar experiences have also been shared 

performance computing and parallel algorithms 

in these last few years [20] [21]. These 

experiences along with the ones presented in 

this article can be used for further research 

trying to establish a knowledge base for 
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