
A Navigation Through Science and Technology

157

Optimization and Parallelization
Experiences Using Hardware Performance Counters

 Fernando G. Tinetti1,2, Sergio M. Martin3, Fernando E. Frati1, Mariano Méndez1

1III-LIDI, Fac. de Informática, UNLP

2

smartin@ing.unlam.edu.ar, marianomendez@gmail.com

 Abstract

Current hardware for compute intensive

tasks includes a large amount of processing fa-

an optimized way. High performance computing

(HPC) is always focused in solving challenging

(or, at least, compute intensive) problems for

which the response time is the priority. We have

been working from two different but usually com-

plementary research problems: a) updating and

parallelizing legacy (HPC/numerical) software,

and b) analyzing different problems and approa-

ches to optimization and parallel processing in

clusters. We have found that raw hardware event

counters do not always directly provide useful

information. We also found some guidelines for

evaluating performance using those counters in

the context of optimization and parallelization.

In this article, we present those guidelines along

with the performance evaluation tools that we

used to determine objectively what parts of the

algorithm offered better chances of improvement.

Keywords: High Performance Computing,

Source code optimization, Performance Eva-

luation, Parallel Computing, Cluster Compu-

ting.

1. Introduction

High performance computing (HPC)

in clusters is one of the most popular

approaches for solving compute, or more

tasks. Computers currently used as cluster’s

nodes usually range from low end desktop/PC

computers (which are economically cheap) to

high end servers/PCs. Terms such as end

 and have

market status. We will refer to them just as PCs

or cluster nodes, emphasizing on their proven

advantageous features, which at least include

low price and high availability [10] [13].

Furthermore, we will refer to clusters as shown

Parallel Computing

SUPERCOMPUTING IN MÉXICO 2013

158

in Fig. 1: a local area network of computers

made up of commodity hardware components.

Cluster nodes, as shown in Fig. 1 are expected

to be multi-core computers sharing memory,

even in NUMA (Non-Uniform Memory

Access) hardware [4]. The most commonly

used interconnection network is 1Gb/s Ethernet

(availability/commodity hardware, cost), but

almost any other interconnection network could

Figure 1. Cluster used for HPC.

There are two levels or types of parallel

processing in current clusters: intra node

and cluster-wide (inter-nodes). The most

common programming models for parallel

processing in clusters are the message passing

and shared memory (threaded) ones. Message

passing is usually implemented by using some

(message passing library) implementation of

MPI (Message Passing Interface) [9], such as

OpenMPI. Shared memory parallel processing

can be implemented in terms of OpenMP [10],

which is currently implemented by most C

and Fortran compilers. Also, it is possible to

combine both programming models (message

passing and shared memory) in the so called

hybrid approach as in [12].

From the point of view of HPC applications,

legacy software has a strong need to be

updated to the new multi-core environment/s.

with strong problems when facing (updating,

etc.) legacy software, but HPC applications

in particular have to be parallelized since the

processors’ clock rate is not going to increase

beyond 3.8-4.2 GHz in the near future [14]

[5] [16]. However, legacy software is not the

only software which needs to be parallelized

or even updated. New algorithms and new

parallel platforms are always analyzed in order

to model and optimize performance. Also, new

applications and new applications sizes are

taken into account as more cores are included

in a multicore chip and more computers are

available (or interconnected) for parallel

computing.

New microprocessors also include new

microarchitectures which not always are fully

exploited for maximum performance. Moreover,

new microprocessors often provide access to

(internal) performance counters in order to

analyze and optimize runtime performance [1]

[6]. Interestingly, performance is associated to

debug in [1], which includes a chapter named

“Software Debug and Performance Resources”

(Chapter 13). This would also

provide an idea of the related complexity.

This possibility of measuring hardware

Optimization and Parallelization Experiences Using Hardware Performance Counters

A Navigation Through Science and Technology

159

counters as a way to determine the performance

of the algorithms being executed motivated us

Perfsuite [8], to determine how our algorithms

performed in such low-level. Before we did this

research, we had to use a “guessing” and code

analysis approach to determine which could

be the causes of performance degradation,

especially on multi-core architectures. Even

though we could achieve some improvement,

the exact causes of the initial problems

remained undiscovered.

However, using tools to access and

analyze hardware counters, allowed us to

get a more objective idea of how to improve

our algorithms. In this article, we will show

how we used Perf and PerfSuite to determine

provided us with the clues as to how to increase

their performance. As a result of using these

tools, we could objectively determine which

were the causes of several of their performance-

degrading problems. We would expect other

scientist programmers to apply these same

tools on their algorithms, and analyze these

same counters in search of analog opportunities

to improve their performance.

The rest of this article is organized as

follows. Section 2 describes the classical

performance metrics and hardware performance

event counters (which are also referred to

as hardware performance monitoring event

counters). The main concepts for performance

evaluation and our initial work on a

legacy program are explained in Section 3, with

and experimentation. Section 4 introduces

a complete example based on a well known

problem and focused on parallelization, and

the effect of some classical optimizations

on parallel performance and the so called

 wall related to parallel computing on

multicore multiprocessors. Finally, includes

several conclusions and further work taking

into account the work done and explained in

this paper, mainly on legacy as well as parallel

code.

2. Performance Metrics and Coun-
ters

Performance has been always the ultimate

performance has been measured directly in

terms of runtime or rates of instructions or

per second). Parallel performance has been

measured also in terms of (plain) runtime or

(2) respectively [16], where is the number

of processors, is the runtime of the

optimum sequential algorithm, and pt(p) is the

parallel elapsed runtime using processors. It

is expected (but not always possible) to obtain

a value near p, since it means that

every processor has been used for a 1/p fraction

of the total processing to be done.

(1)

It is worth noting that 0 <

1, (at least in non pathological cases), and

values of p) near 1 indicates that

about 100% of computing resources are used

at runtime.

Parallel Computing

SUPERCOMPUTING IN MÉXICO 2013

160

such as PAPI (Performance API) [18] provide

more or less general and vendor independent

information.

3. Legacy Code Example

We have selected a global climate model

as an example of legacy code example: GISS-

AOM(C4x3) from GISS, the NASA Goddard

Institute for Space Studies [11]. We have

experimented with this legacy Fortran code

looking for several interesting information

regarding compilers, performance counters,

legacy code optimization, and prospective

issues for parallelization:

code behavior and optimization. We consider

the starting points as a completely unknown

and monitoring events provide a basis for a

methodology on enhancing such legacy source

code.

compilers, mostly from the point of view of

performance and optimization levels. We

have used gfortran and ifort (Intel Fortran

compiler). We are not interested in compiler-

extensions, and this is why we have used

“-O[1/2/3]” optimization levels.

performance, based on monitoring events

reported by the processor/s.

We have used PerfSuite as a high level

approach for gathering hardware performance

events information, i.e. to avoid doing a direct

analysis of lower level tool results such as perf

(2)

We could argue that in the end, every

performance metric is computed using elapsed

runtime. On one hand, it is fair enough, since

runtime is of the underlying

processing hardware. But on the other hand,

given a performance value, it is hard or unlikely

penalties. There are some guidelines

to look for performance penalties in the

parallel processing area. Most of the parallel

algorithms try to solve several communication,

synchronization, and/or computing (un)balance

problems. At this point, hardware performance

information of the hardware performance.

Having access to hardware performance

counters tends to reduce the number of

of the available hardware. Thus, we can

use performance (monitoring) counters for

identifying (some) performance penalties and

evaluate algorithms changes which are made

for optimization/s [9] [2] [3] [7]. Unfortunately,

low level information, which is not always

directly/easily related to the algorithms. We

will show that performance counters have to

experiments have to be carried out to collect

relevant data. We will avoid using proprietary

manufacturers’ tools and hardware/model low

level information whenever possible (e.g. Intel

From this point of view, tools such as perf and

API (Application Programming Interfaces)

Optimization and Parallelization Experiences Using Hardware Performance Counters

A Navigation Through Science and Technology

161

[19] and instrumentation libraries such as PAPI

[18]. A general syntax of usage for PerfSuite as

used in our experiments is shown as follows:

Where is the output previously

generated by perf, program is the binary to

generated by PerfSuite. will then

The experiments were carried out using the

Intel Core i5-2400 (3.1 GHz) and the Intel Xeon

x5550 (2.66 GHz), with Linux (kernel 2.6.38).

Most of the results are similar in both compilers

and platforms, so we present averages and/or

main characteristics which are independent of

shown that more than 80% of the total runtime

is spent in 21 subprograms (Fortran functions

and subroutines). This means that most of the

optimization and parallelization effort should

be employed in those 21 subprograms. For

large legacy applications, this could be a huge

reduction in the amount of source code to work

on.

performance of the legacy software, we used

several optimization options, shown in Table

I. Most of the improvement is obtained in the

to reduce the runtime to the 62% of the non-

optimized binary code. In this case, the second

optimization level added some gains (which is

not always obtained, i.e. in all hardware and

compiler variants).

Table I. Optimization gains (time

reduction)

We have collected available information

the data in Table II, for a reduced number of

counter data. Clearly, raw numbers collected

from the hardware do not provide any useful

information. However, with the event counters

data it is possible to obtain information not

only about optimizations, but also about

optimization focus.

Table III shows the improvement in cache

misses, i.e. the reduction in (instructions and

data) caches and TLB (Translation Lookaside

Buffer) misses when using O1 relative to those

obtained with –O0 (no compiler optimization).

Most of the performance improvement provided

by the -O1 optimization level is due to the very

good work of the compiler on the instructions.

Compilers are able to optimize the available

resources in hardware pipelines, superscalar

units, branch prediction, and almost every

hardware facility for ILP (Instruction Level

Parallelism). Branch instruction event counters

can be also used to support this behavior:

been lowered by 11.95%.

instructions have been decreased by

36.49 %.

instructions have been decreased by

37.97 %.

Parallel Computing

SUPERCOMPUTING IN MÉXICO 2013

162

Table II. Raw event counters numbers

Table III shows that almost no performance

enhancement is obtained by taking advantage

of data cache/s.

Table III. Misses (caches and TLB)

improvement with -O1

It is worth noting that legacy code

parallelization has a strong relationship with

data usage (accesses to cache/s and main

memory, i.e. the memory hierarchy), since it

is nearly impossible to recode or change the

underlying algorithms on almost unknown

code. At least in the initial parallelization stages/

tasks, the basic algorithm is kept unchanged

and the way in which data and threads and/or

facility is used. It is clear from Table III that

taken into account (preferably at early stages)

in the parallelization work.

4. Parallelization Example

In [15] is reported the work on a very simple

but time consuming algorithm used for N-body/

particle simulation. It has also been shown how

tiling (a very common optimization technique

for memory accesses) has made possible a huge

performance gain for two, four, and eight cores

improvement in sequential computing:

less than 10% [15].

Eq. (2), becomes greater than 95% for

2, 4, and 8 cores (using two quad-core

processors). Conversely, when tiling

two threads and drops to 0.51 for eight

threads (running on eight cores sharing

main memory) [15].

We had not to determine if it is possible

to identify the memory contention using

performance monitoring counters. To answer

this question, we used perf [19] in order to

experiment and gather information about

hardware. We have found that perf is a

simple yet powerful tool, and easier to install

than PerfSuite, which also depends on other

software/libraries, such as PAPI. We run

in C language) for identifying cache events,

i.e.:

this is useful to avoid long experiments

runtime as well as issues due to memory

Optimization and Parallelization Experiences Using Hardware Performance Counters

A Navigation Through Science and Technology

163

accesses other than memory contention.

2, 4, 6, and 8.

The syntax used for our experiments

using perf is shown as follows:

after a –

cache load misses, and LLC load misses to

represents the OMP version of our N-body

algorithm that is being run for 10000 and one

step.

The results of this experiment are shown in

(Eff.), and the percentage of Last Level Cache

(LLC) and L1 data cache misses relative to

the “previous” number of threads experiment.

Initially, we ran experiments with 2, 4, and 8

threads, and we found a huge performance loss

about 0.47 for 8 threads, when it was about 0.98

when 4 threads process data. Thus, we added

several experiments with one more number of

threads in between 4 and 8, i.e. 6, so that we

are able to analyze the performance problem in

detail.

Table IV. Cache load misses (relative

 Level 1 data cache load misses

 Last Level Cache load misses

We use “previous” in the sense of number

of “previous number of threads” because it

highlights the main differences related to

algorithm scalability. For example, Table IV

shows that the number of L1 data cache misses

is almost constant for 1, 2, and 4 threads, since

for 2 cores, it is about 100% of the misses for

reported for 1 core, and, rather surprisingly, the

number of L1 data cache misses for 4 threads

is 92% of the L1 data cache misses for 2

threads. Minor differences could appear given

to the statistical nature of event counting by

multiplexing hardware counters.

The parallel performance is very good

For 2 and 4 threads, i.e. both have more than

in performance and scalability for 6 and 8

threads. One could be confused by the increase

of 326% of L1 data cache misses for 6 threads

regarding the number of L1 data cache misses

for 4 threads. Actually, the real problem is the

huge increase of 599% LLC-lm for 6 threads

regarding those for 4 threads. Part of that

599% LLC-lm is “hidden” by the other level/s

of cache/s, but it is clear that data from main

memory is not arriving at the rate the processor

are 6 threads requiring data to process from

the same memory, and from those 6 threads, 4

threads share the LLC in a quad-core processor

while the other two needs almost the same data

to process in the other processor. The situation

is even worse for 8 threads, as expected: there

are 358% more LLC load misses than for those

happening for 6 threads.

These results show clearly that using more

cores imply more shared memory contention

Parallel Computing

SUPERCOMPUTING IN MÉXICO 2013

164

when the threads are not running in the cores

of a unique processor (thus having access to the

shared LLC). Even though processing-time is

of adding them are severely reduced. This lead

us to think that there may be a shared LLC

cache throughput limit that, at a certain demand,

collapses and reduces the overall performance.

Once this limit is reached, penalization for L1

cache misses is much more time-consuming.

Therefore, the overall per-core speedup is

reduced. In our case, this limit is reached when

using more than 4 cores (on the 6 and 8 core

cases).

Previous research [17] indicate us that this

so-called is quickly found not only

when a processor runs faster but also when more

cores run in the same processor, which is our

case for the 6-8 core run. The number of cores

per processor and the number of processors

sharing main memory can be increased, but

performance would be unacceptable (or even

disappointing) if memory and/or the algorithms

are not improved/optimized/adapted. There is

clear evidence now about what we explained

by the end of the previous section: data cache

improvement has to be taken into account

(preferably at early stages) for parallel

computing. We have collected and shown in

event counters evidence.

5. Conclusions and Further Work

Until we performed this research, we had

to rely on guessing techniques, and high-level

analysis to determine which were the causes of

performance degradation on our parallel and

legacy codes. Although some of our results

were positive [15] [16], we were still lacking

a formal method to know the exact causes (or

their amount) that caused this degradations.

Now, most of this classical guesswork used in

optimization and parallelization performance

analysis is now supported by performance

counters.

information is now possible to be gathered for

almost unknown (legacy) and self developed

source code. Furthermore, we can access to

and collect information from the performance

event monitoring counters from different

programming languages, such as Fortran and

C (which, besides, are among the most popular

languages in HPC).

Even when the optimization and

parallelization problems remain the same in the

long term, performance counters provide very

useful information for both tasks. Moreover,

new possibilities could be explored based on

shown that single events are not necessarily

good enough for performance analysis, but

having a minimum knowledge of hardware

architecture/s will lead to combine events so

that the searching space for optimizations

and parallelization would be narrowed down

without missing important details.

Performance event counters do not solve by

themselves optimization- and parallelization-

related problems, they help taking informed/

supported decisions. Moreover, low level

hardware details (those accounted for by event

counters) could produce an unmanageable

amount of information and should be used

carefully. So far, there is no general methodology

for approaching a program using performance

event counters, and we are working on

Optimization and Parallelization Experiences Using Hardware Performance Counters

A Navigation Through Science and Technology

165

tool o set of tools for aiding HPC programmers

for optimization and parallelization.

Similar experiences have also been shared

performance computing and parallel algorithms

in these last few years [20] [21]. These

experiences along with the ones presented in

this article can be used for further research

trying to establish a knowledge base for

References

[1] Advanced Micro Devices, AMD64 Technology,

AMD64 Architecture Programmer’s Manual, Volu-

me 2: System Programming, March 2012.

[2] Advanced Micro Devices, Software Optimiza-

tion Guide for AMD Family 10h and 12h Processors,

February 2011. Available at http://support.amd.com/

us/Processor_ TechDocs/40546.pdf

[3] Advanced Micro Devices, Software Optimiza-

tion Guide for AMD Family 15h Processors, Avai-

lable at http://support.amd.com/us/Processor_Tech-

Docs/47414_15h_sw_opt_guide.pdf

[4] Advanced Micro Devices, Surviving and Thri-

ving in a Multi-Core World, Nov. 2006.

[5] Shekhar Y. Borkar, Pradeep Dubey, Kevin C.

Kahn, David J. Kuck, Hans Mulder, Stephen S.

Pawlowski, Justin R. Rattner, Platform 2015: Intel

Processor and Platform Evolution for the Next Deca-

de, Intel White Paper, 2005. Available at ftp://down-

load.intel.com/tech nology/computing/archinnov/

platform2015/download/Platform_2015.pdf

[6] Intel Corp., Intel 64 and IA-32 Architectures

Software Developer’s Manual, Volume 3B: System

Programming Guide, Part 2, Aug. 2012.

[7] Intel Corp., Intel Microarchitecture Codename

Nehalem Performance Monitoring Unit Program-

ming Guide (Nehalem Core PMU), 2010. Available

c/f/1/30320-Nehalem-PMU-Programming-Gui-

de-Core.pdf

[8] Rick Kufrin, “PerfSuite: An Accessible, Open

Source Performance Analysis Environment for

Linux”, 6th International Conference on Linux Clus-

ters: The HPC Revolution, Chapel Hill, NC, April

2005.

[9] David Levinthal, “Performance Analysis Guide

for Intel Core i7 Processor and Intel Xeon 5500 pro-

cessors”, Intel Corp., 2009. Available at http://sof-

tware.intel.com/ sites/products/collateral/hpc/vtune/

performance_analysis_guide.pdf

-

tion, Prentice Hall, Dec. 1997, ISBN 0138997098.

[11] Gary L. Russell, James R. Miller, David Rind,

“A Coupled Atmosphere-Ocean Model for Transient

Climate Change Studies”, Atmosphere-ocean, 33(4),

1995.

[12] Gerald Schubert, Holger Fehske, Georg Ha-

ger, Gerhard Wellein, “Hybrid-parallel sparse ma-

trix-vector multiplication with explicit communica-

tion overlap on current multicore-based systems”,

Parallel Processing Letters 21(3), 2011.

[13] Thomas L. Sterling, Beowulf Cluster Computing

With Linux, MIT Press, 2001, ISBN 0262692740.

[14] Herb Sutter “The Free Lunch is Over: a Funda-

Parallel Computing

SUPERCOMPUTING IN MÉXICO 2013

166

mental Turn Toward Concurrency in Software”, Dr.

Dobb’s Journal, Vol. 30, No. 3, 2005, http://www.

gotw.ca/publica tions/concurrency-ddj.htm.

[15] Fernando G. Tinetti, Sergio M. Martin, “Se-

quential and Shared and Distributed Memory Para-

llelization in Clusters: N-Body/Particle Simulation”,

24th IASTED International Conference on Parallel

and Distributed Computing and Systems, PDCS

2012, November 12 – 14, 2012, Las Vegas, USA.

[16] Fernando G. Tinetti, Mariano Méndez, Fortran

Legacy Software: Source Code Update and Possible

Parallelization Issues, ACM Fortran Forum, April

2012, Vol. 31, No. 1.

[17] Wlliam A. Wulf, Sally A. Mckee, “Hitting the

Memory Wall: Implications of the Obvious”, ACM

SIGARCH Computer Architecture News, Vol. 23,

1995.

[18] PAPI, http://icl.cs.utk.edu/papi/

[19] Tutorial - Perf Wiki, https://perf.wiki.kernel.

org/in dex.php/Tutorial

[20] Wucherl Yoo, “Automated Performance Cha-

racterization of Applications Using Hardware Moni-

toring Events”, Doctoral Dissertation. University of

Illinois at Urbana-Champaign. 2012, Illinois, USA.

[21] Xingfu Wu, Valerie Taylor, “Performance Mo-

deling of Hybrid MPI/OpenMP Scientic Applica-

tions on Large-scale Multicore Supercomputers”,

Elsevier, Journal of Computer and System Sciences.

May 2012, Vol. 79, No. 8.

Optimization and Parallelization Experiences Using Hardware Performance Counters

